Jon Haitz Legarreta, Zhou Lan, Yuqian Chen, Fan Zhang, Edward H Yeterian, Nikos Makris, Richard J Rushmore, Yogesh Rathi, Lauren J O'Donnell
{"title":"Towards an Informed Choice of Diffusion MRI Image Contrasts for Cerebellar Segmentation.","authors":"Jon Haitz Legarreta, Zhou Lan, Yuqian Chen, Fan Zhang, Edward H Yeterian, Nikos Makris, Richard J Rushmore, Yogesh Rathi, Lauren J O'Donnell","doi":"10.1002/hbm.70317","DOIUrl":null,"url":null,"abstract":"<p><p>The fine-grained segmentation of cerebellar structures is an essential step towards supplying increasingly accurate anatomically informed analyses, including, for example, white matter diffusion magnetic resonance imaging (MRI) tractography. Cerebellar tissue segmentation is typically performed on structural MRI data, such as T1-weighted data, while connectivity between segmented regions is mapped using diffusion MRI tractography data. Small deviations in structural to diffusion MRI data co-registration may negatively impact connectivity analyses. Reliable segmentation of brain tissue performed directly on diffusion MRI data helps to circumvent such inaccuracies. Diffusion MRI enables the computation of many image contrasts, including a variety of tissue microstructure maps. While multiple methods have been proposed for the segmentation of cerebellar structures using diffusion MRI, little attention has been paid to the systematic evaluation of the performance of different available input image contrasts for the segmentation task. In this work, we evaluate and compare the segmentation performance of diffusion MRI-derived contrasts on the cerebellar segmentation task. Specifically, we include spherical mean (diffusion-weighted image average) and b0 (non-diffusion-weighted image average) contrasts, local signal parameterization contrasts (diffusion tensor and kurtosis fit maps), and the structural T1-weighted MRI contrast that is most commonly employed for the task. We train a popular deep-learning architecture using a publicly available dataset (HCP-YA) on a set of cerebellar white and gray matter region labels obtained from the atlas-based SUIT cerebellar segmentation pipeline employing T1-weighted data. By training and testing using many diffusion-MRI-derived image inputs, we find that the spherical mean image computed from b = 1000 s/mm<sup>2</sup> shell data provides stable performance across different metrics and significantly outperforms the tissue microstructure contrasts that are traditionally used in machine learning segmentation methods for diffusion MRI.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 11","pages":"e70317"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70317","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The fine-grained segmentation of cerebellar structures is an essential step towards supplying increasingly accurate anatomically informed analyses, including, for example, white matter diffusion magnetic resonance imaging (MRI) tractography. Cerebellar tissue segmentation is typically performed on structural MRI data, such as T1-weighted data, while connectivity between segmented regions is mapped using diffusion MRI tractography data. Small deviations in structural to diffusion MRI data co-registration may negatively impact connectivity analyses. Reliable segmentation of brain tissue performed directly on diffusion MRI data helps to circumvent such inaccuracies. Diffusion MRI enables the computation of many image contrasts, including a variety of tissue microstructure maps. While multiple methods have been proposed for the segmentation of cerebellar structures using diffusion MRI, little attention has been paid to the systematic evaluation of the performance of different available input image contrasts for the segmentation task. In this work, we evaluate and compare the segmentation performance of diffusion MRI-derived contrasts on the cerebellar segmentation task. Specifically, we include spherical mean (diffusion-weighted image average) and b0 (non-diffusion-weighted image average) contrasts, local signal parameterization contrasts (diffusion tensor and kurtosis fit maps), and the structural T1-weighted MRI contrast that is most commonly employed for the task. We train a popular deep-learning architecture using a publicly available dataset (HCP-YA) on a set of cerebellar white and gray matter region labels obtained from the atlas-based SUIT cerebellar segmentation pipeline employing T1-weighted data. By training and testing using many diffusion-MRI-derived image inputs, we find that the spherical mean image computed from b = 1000 s/mm2 shell data provides stable performance across different metrics and significantly outperforms the tissue microstructure contrasts that are traditionally used in machine learning segmentation methods for diffusion MRI.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.