A light-fueled self-oscillator that senses force.

IF 9.6 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Communications Materials Pub Date : 2025-01-01 Epub Date: 2025-08-05 DOI:10.1038/s43246-025-00903-2
Zixuan Deng, Arri Priimagi, Kai Li, Hao Zeng
{"title":"A light-fueled self-oscillator that senses force.","authors":"Zixuan Deng, Arri Priimagi, Kai Li, Hao Zeng","doi":"10.1038/s43246-025-00903-2","DOIUrl":null,"url":null,"abstract":"<p><p>Light-responsive materials with intrinsic negative feedback enable self-oscillation in non-equilibrium states. Conventional systems rely on self-shadowing in bending modes but fail when shadowing is constrained. Here, we demonstrate that external mechanical forces can bypass this limitation, enabling sustained oscillations without complete shadowing. Using a vertically suspended light-responsive liquid crystal network (LCN) strip under constant irradiation, a transition from static deformation to continuous oscillation arises when a critical load is applied. This system reveals two key phenomena: (1) oscillation amplitude scales with light intensity, reaching an angular displacement of 300°-significantly surpassing bending-mode oscillators; and (2) oscillation frequency decreases with increasing load, reflecting intrinsic mechanical sensitivity. This force-assisted self-oscillation principle generalizes across diverse deformation modes, including bending, twisting, contraction, and off-axis LCN strips. By mimicking biological mechanosensation based on dissipative mechanism, our findings provide a simplified design for non-equilibrium matter capable of dynamic adaptation to mechanical loads.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"173"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00903-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Light-responsive materials with intrinsic negative feedback enable self-oscillation in non-equilibrium states. Conventional systems rely on self-shadowing in bending modes but fail when shadowing is constrained. Here, we demonstrate that external mechanical forces can bypass this limitation, enabling sustained oscillations without complete shadowing. Using a vertically suspended light-responsive liquid crystal network (LCN) strip under constant irradiation, a transition from static deformation to continuous oscillation arises when a critical load is applied. This system reveals two key phenomena: (1) oscillation amplitude scales with light intensity, reaching an angular displacement of 300°-significantly surpassing bending-mode oscillators; and (2) oscillation frequency decreases with increasing load, reflecting intrinsic mechanical sensitivity. This force-assisted self-oscillation principle generalizes across diverse deformation modes, including bending, twisting, contraction, and off-axis LCN strips. By mimicking biological mechanosensation based on dissipative mechanism, our findings provide a simplified design for non-equilibrium matter capable of dynamic adaptation to mechanical loads.

一个能感知力的光驱动自振器。
具有内在负反馈的光响应材料能够在非平衡状态下自振荡。传统的系统在弯曲模式下依赖于自阴影,但当阴影受到限制时就会失效。在这里,我们证明了外部机械力可以绕过这一限制,实现持续的振荡而不完全遮蔽。利用垂直悬浮的光响应液晶网络(LCN)条在恒定照射下,当施加临界载荷时,会发生从静态变形到连续振荡的转变。该系统揭示了两个关键现象:(1)振荡幅度与光强成正比,达到300°的角位移,明显超过弯曲模振荡器;(2)振荡频率随载荷的增大而减小,反映了固有的机械灵敏度。这种力辅助自振荡原理适用于各种变形模式,包括弯曲、扭曲、收缩和离轴LCN带。通过模拟基于耗散机制的生物机械感觉,我们的研究结果为能够动态适应机械负荷的非平衡物质提供了一种简化的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信