In-situ visual delignification and cell-scale kinetics modeling using confocal Raman microscopy.

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Bioresource Technology Pub Date : 2025-12-01 Epub Date: 2025-08-05 DOI:10.1016/j.biortech.2025.133098
Yuanping Huang, Zengling Yang, Chenjun Ge, Zhuolin Shi, Xinlei Wang, Lujia Han
{"title":"In-situ visual delignification and cell-scale kinetics modeling using confocal Raman microscopy.","authors":"Yuanping Huang, Zengling Yang, Chenjun Ge, Zhuolin Shi, Xinlei Wang, Lujia Han","doi":"10.1016/j.biortech.2025.133098","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient delignification remains a critical technological bottleneck hindering the valorization of plant cell wall resources. Plant cell walls are dynamic, spatially heterogeneous networks characterized by a highly interconnected physical architecture and complex chemical composition. In-situ visualization of delignification dynamics at the cell scale, coupled with a quantitative understanding of cell-specific delignification kinetics, provide a powerful approach for a deeper understanding of the delignification process. In this study, Confocal Raman microscopy mapping was employed to obtain lignin content and visualize the in-situ delignification process in different tissues and cells from rice stem, including parenchyma, sclerenchyma, protoxylem, vascular bundle sheath, epidermis, metaxylem, and external vascular bundle. Results revealed pronounced cell-type-dependent delignification responses, further supporting the concept that recalcitrance is not solely determined by lignin content per se. Furthermore, this study established, for the first time, the delignification kinetic models for these distinct tissues and cells, providing a quantitative framework for describing lignin content dynamics during acidified sodium chlorite delignification process. This study offers a valuable approach for understanding and optimizing cell-type-specific responses during the implementation of delignification strategies.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133098"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133098","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient delignification remains a critical technological bottleneck hindering the valorization of plant cell wall resources. Plant cell walls are dynamic, spatially heterogeneous networks characterized by a highly interconnected physical architecture and complex chemical composition. In-situ visualization of delignification dynamics at the cell scale, coupled with a quantitative understanding of cell-specific delignification kinetics, provide a powerful approach for a deeper understanding of the delignification process. In this study, Confocal Raman microscopy mapping was employed to obtain lignin content and visualize the in-situ delignification process in different tissues and cells from rice stem, including parenchyma, sclerenchyma, protoxylem, vascular bundle sheath, epidermis, metaxylem, and external vascular bundle. Results revealed pronounced cell-type-dependent delignification responses, further supporting the concept that recalcitrance is not solely determined by lignin content per se. Furthermore, this study established, for the first time, the delignification kinetic models for these distinct tissues and cells, providing a quantitative framework for describing lignin content dynamics during acidified sodium chlorite delignification process. This study offers a valuable approach for understanding and optimizing cell-type-specific responses during the implementation of delignification strategies.

使用共聚焦拉曼显微镜进行原位视觉脱木质素和细胞尺度动力学建模。
高效脱木质素仍然是阻碍植物细胞壁资源增值的关键技术瓶颈。植物细胞壁是动态的、空间异质性的网络,具有高度互联的物理结构和复杂的化学成分。在细胞尺度上的原位可视化脱木质素动力学,加上对细胞特异性脱木质素动力学的定量理解,为更深入地了解脱木质素过程提供了有力的方法。本研究利用共聚焦拉曼显微镜测图技术获取了水稻茎中薄壁组织、厚壁组织、原木质部、维管束鞘、表皮、中质部和外维管束等不同组织和细胞的木质素含量,并观察了木质素的原位脱木质素过程。结果显示明显的细胞类型依赖性脱木质素反应,进一步支持顽固性不仅仅由木质素含量本身决定的概念。此外,本研究首次建立了这些不同组织和细胞的脱木质素动力学模型,为描述酸化亚氯酸钠脱木质素过程中木质素含量的动态提供了定量框架。该研究为理解和优化脱木质素策略实施过程中细胞类型特异性反应提供了有价值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信