Balancing nitrogen metabolism to efficiently drive anti-tuberculosis ilamycins biosynthesis in Streptomyces atratus.

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Bioresource Technology Pub Date : 2025-12-01 Epub Date: 2025-08-05 DOI:10.1016/j.biortech.2025.133099
Gaofan Zheng, Weiyan Zhou, Yingyue Gui, Yuxi Jiang, Yunfei Zhu, Junying Ma, Jianhua Ju, Xiujuan Xin, Baoli Li, Ruida Wang, Ming Zhao, Faliang An
{"title":"Balancing nitrogen metabolism to efficiently drive anti-tuberculosis ilamycins biosynthesis in Streptomyces atratus.","authors":"Gaofan Zheng, Weiyan Zhou, Yingyue Gui, Yuxi Jiang, Yunfei Zhu, Junying Ma, Jianhua Ju, Xiujuan Xin, Baoli Li, Ruida Wang, Ming Zhao, Faliang An","doi":"10.1016/j.biortech.2025.133099","DOIUrl":null,"url":null,"abstract":"<p><p>The deep-sea-derived Streptomyces atratus SCSIO ZH16 is a promising host for producing nanomole-level anti-tuberculosis ilamycins. However, limited research on regulating the ilamycins biosynthetic gene cluster (BGC) has hindered industrial production. Our previous study found that nitrogen metabolism-related genes were upregulated in strains with enhanced ilamycins production. Since amino acids from nitrogen metabolism are key precursors, we aimed to optimize ilamycins production by balancing BGC expression and nitrogen metabolism. Using RNA-seq and hierarchical clustering, we identified the native promoter P<sub>20605</sub> and its modified version P<sub>20605-400</sub>, which regulate the positive regulator IlaB in ilamycins BGC. To synchronously boost ilamycins synthesis and precursor supply, we analyzed P<sub>20605</sub>'s function via bioinformatics and validated it using an indigoidine biosynthetic model. The engineered strain ΔilaR::P<sub>20605-400</sub>-ilaB::P<sub>ermE*</sub>-phoP achieved over a dozen-fold increase in ilamycins yield. Fermentation was successfully scaled up in 5-L and 500-L bioreactors, reaching titers of 2,546.4 mg/L and 1,993.9 mg/L, respectively, significantly surpassing previously reported yields. This study highlights the industrial potential of ilamycins and provides insights into enhancing peptide compound production in Streptomyces.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133099"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133099","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The deep-sea-derived Streptomyces atratus SCSIO ZH16 is a promising host for producing nanomole-level anti-tuberculosis ilamycins. However, limited research on regulating the ilamycins biosynthetic gene cluster (BGC) has hindered industrial production. Our previous study found that nitrogen metabolism-related genes were upregulated in strains with enhanced ilamycins production. Since amino acids from nitrogen metabolism are key precursors, we aimed to optimize ilamycins production by balancing BGC expression and nitrogen metabolism. Using RNA-seq and hierarchical clustering, we identified the native promoter P20605 and its modified version P20605-400, which regulate the positive regulator IlaB in ilamycins BGC. To synchronously boost ilamycins synthesis and precursor supply, we analyzed P20605's function via bioinformatics and validated it using an indigoidine biosynthetic model. The engineered strain ΔilaR::P20605-400-ilaB::PermE*-phoP achieved over a dozen-fold increase in ilamycins yield. Fermentation was successfully scaled up in 5-L and 500-L bioreactors, reaching titers of 2,546.4 mg/L and 1,993.9 mg/L, respectively, significantly surpassing previously reported yields. This study highlights the industrial potential of ilamycins and provides insights into enhancing peptide compound production in Streptomyces.

平衡氮代谢有效驱动atatatus链霉菌抗结核ilamycin生物合成。
深海来源的atratus链霉菌SCSIO ZH16是生产纳米级抗结核ilamycin的理想宿主。然而,对ilamycin生物合成基因簇(BGC)调控的研究有限,阻碍了其产业化生产。我们之前的研究发现,氮代谢相关基因在伊霉素产量增加的菌株中表达上调。由于来自氮代谢的氨基酸是关键的前体,我们旨在通过平衡BGC表达和氮代谢来优化ilamycin的生产。利用RNA-seq和分层聚类技术,我们鉴定出了在ilamycin BGC中调控阳性调节因子IlaB的天然启动子P20605及其修饰版本P20605-400。为了同步促进ilamycin的合成和前体供应,我们通过生物信息学分析了P20605的功能,并使用靛蓝苷生物合成模型对其进行了验证。工程菌株ΔilaR::P20605-400-ilaB::PermE*-phoP的伊霉素产量增加了十几倍以上。在5-L和500-L生物反应器中发酵成功,滴度分别达到2,546.4 mg/L和1,993.9 mg/L,显著超过先前报道的产量。这项研究突出了伊霉素的工业潜力,并为加强链霉菌的肽化合物生产提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信