Acetate metabolism during xylose fermentation enhances 3-hydroxypropionic acid production in engineered acid-tolerant Issatchenkia orientalis.

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Bioresource Technology Pub Date : 2025-12-01 Epub Date: 2025-08-06 DOI:10.1016/j.biortech.2025.133113
Deokyeol Jeong, Dahye Lee, Junli Liu, Soo Rin Kim, Yong-Su Jin, Jikai Zhao, Eun Joong Oh
{"title":"Acetate metabolism during xylose fermentation enhances 3-hydroxypropionic acid production in engineered acid-tolerant Issatchenkia orientalis.","authors":"Deokyeol Jeong, Dahye Lee, Junli Liu, Soo Rin Kim, Yong-Su Jin, Jikai Zhao, Eun Joong Oh","doi":"10.1016/j.biortech.2025.133113","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient bioconversion of acetate-rich lignocellulosic biomass into value-added chemicals remains a major challenge due to the toxicity of acetic acid. In this study, we developed an acid-tolerant Issatchenkia orientalis strain (IoDY01H) capable of producing 3-hydroxypropionic acid (3-HP), a key bioplastic precursor, from glucose, xylose, and acetate. Using a Cas9-based genome editing system with a hygromycin B resistance marker, we introduced heterologous genes encoding xylose utilization and β-alanine-based 3-HP biosynthetic pathways into the I. orientalis genome. Metabolomic analysis revealed that acetate supplementation redirected metabolic flux toward amino acid and lipid metabolism while reducing tricarboxylic acid (TCA) cycle intermediates. Acetate enhanced 3-HP production; however, the accumulation of β-alanine suggests that the activity of β-alanine-pyruvate aminotransferase may have been limited under acidic conditions. Consistent with this, fermentation at pH 5.5 resulted in higher 3-HP titers than at pH 3.5. Using pretreated hemp stalk hydrolysate as a feedstock, the engineered strain achieved a 3-HP titer of 8.7 g/L via separate hydrolysis and fermentation (SHF), outperforming simultaneous saccharification and fermentation (SSF). These findings demonstrate the feasibility of producing 3-HP from acetate-rich biomass using engineered non-conventional yeast and highlight I. orientalis as a promising microbial chassis for industrial bioconversion.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133113"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133113","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient bioconversion of acetate-rich lignocellulosic biomass into value-added chemicals remains a major challenge due to the toxicity of acetic acid. In this study, we developed an acid-tolerant Issatchenkia orientalis strain (IoDY01H) capable of producing 3-hydroxypropionic acid (3-HP), a key bioplastic precursor, from glucose, xylose, and acetate. Using a Cas9-based genome editing system with a hygromycin B resistance marker, we introduced heterologous genes encoding xylose utilization and β-alanine-based 3-HP biosynthetic pathways into the I. orientalis genome. Metabolomic analysis revealed that acetate supplementation redirected metabolic flux toward amino acid and lipid metabolism while reducing tricarboxylic acid (TCA) cycle intermediates. Acetate enhanced 3-HP production; however, the accumulation of β-alanine suggests that the activity of β-alanine-pyruvate aminotransferase may have been limited under acidic conditions. Consistent with this, fermentation at pH 5.5 resulted in higher 3-HP titers than at pH 3.5. Using pretreated hemp stalk hydrolysate as a feedstock, the engineered strain achieved a 3-HP titer of 8.7 g/L via separate hydrolysis and fermentation (SHF), outperforming simultaneous saccharification and fermentation (SSF). These findings demonstrate the feasibility of producing 3-HP from acetate-rich biomass using engineered non-conventional yeast and highlight I. orientalis as a promising microbial chassis for industrial bioconversion.

木糖发酵过程中的醋酸代谢促进了工程耐酸木糖发酵过程中3-羟基丙酸的产生。
由于醋酸的毒性,将富含乙酸的木质纤维素生物质有效地转化为增值化学品仍然是一个重大挑战。在这项研究中,我们培育了一株耐酸的Issatchenkia orientalis菌株(IoDY01H),该菌株能够从葡萄糖、木糖和醋酸中产生3-羟基丙酸(3-HP),这是一种关键的生物塑料前体。利用含潮霉素B抗性标记的cas9基因编辑系统,我们将编码木糖利用途径和基于β-丙氨酸的3-HP生物合成途径的外源基因导入到东方稻基因组中。代谢组学分析显示,乙酸的补充将代谢通量转向氨基酸和脂质代谢,同时减少了三羧酸(TCA)循环的中间体。醋酸提高3马力产量;然而,β-丙氨酸的积累表明β-丙氨酸-丙酮酸转氨酶的活性可能在酸性条件下受到限制。与此一致的是,在pH 5.5下发酵产生的3-HP滴度高于pH 3.5。以预处理后的大麻秸秆水解液为原料,通过单独水解发酵(SHF)获得了8.7 g/L的3 hp滴度,优于同时糖化发酵(SSF)。这些发现证明了利用工程非常规酵母从富含乙酸酯的生物质中生产3-HP的可行性,并突出了东方酵母作为工业生物转化的有前途的微生物底盘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信