Controllable partial self-sacrifice of metal-organic frameworks for enhancing nitrate electroreduction to ammonia

IF 11.6 Q1 CHEMISTRY, PHYSICAL
Bin Lei, Xiao Liu, Bo Li, Haolin Lu, Xing-Yue He, Xiaowen Wang, Guankui Long, Jian-Gong Ma, Peng Cheng
{"title":"Controllable partial self-sacrifice of metal-organic frameworks for enhancing nitrate electroreduction to ammonia","authors":"Bin Lei, Xiao Liu, Bo Li, Haolin Lu, Xing-Yue He, Xiaowen Wang, Guankui Long, Jian-Gong Ma, Peng Cheng","doi":"10.1016/j.checat.2025.101484","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction to ammonia (NO<sub>3</sub>RR) is the most promising pathway for the value-added conversion of nitrate. However, the NO<sub>3</sub>RR process involves the transfer of multi-electrons and protons and hence suffers from slow kinetics, leading to an urgent need to develop high-performance NO<sub>3</sub>RR catalysts. Here, we prepare ultrafine Cu<sub>2</sub>O particles <em>in situ</em> generated and encapsulated in metal-organic frameworks (MOFs) containing coordination-unsaturated Cu<sup>2+</sup> nodes by the controlled self-sacrifice of a selected part of the framework. The composite catalyst achieves the impressive catalytic performance for NO<sub>3</sub>RR, with an NH<sub>3</sub> yield rate of 6.35 mmol h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup> and corresponding Faraday efficiency of 98.6%. Density functional theory (DFT) calculations demonstrate that the synergistic effect between unsaturated Cu<sup>2+</sup> nodes and nanoparticles markedly decreases the potential energy of all intermediates, thereby facilitating an efficient conversion of nitrate to ammonia.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"35 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrate reduction to ammonia (NO3RR) is the most promising pathway for the value-added conversion of nitrate. However, the NO3RR process involves the transfer of multi-electrons and protons and hence suffers from slow kinetics, leading to an urgent need to develop high-performance NO3RR catalysts. Here, we prepare ultrafine Cu2O particles in situ generated and encapsulated in metal-organic frameworks (MOFs) containing coordination-unsaturated Cu2+ nodes by the controlled self-sacrifice of a selected part of the framework. The composite catalyst achieves the impressive catalytic performance for NO3RR, with an NH3 yield rate of 6.35 mmol h−1 mgcat−1 and corresponding Faraday efficiency of 98.6%. Density functional theory (DFT) calculations demonstrate that the synergistic effect between unsaturated Cu2+ nodes and nanoparticles markedly decreases the potential energy of all intermediates, thereby facilitating an efficient conversion of nitrate to ammonia.

Abstract Image

金属有机骨架的可控部分自我牺牲促进硝酸盐电还原制氨
电化学硝酸还原制氨(NO3RR)是最有前途的硝酸盐增值转化途径。然而,NO3RR过程涉及多个电子和质子的转移,因此动力学缓慢,因此迫切需要开发高性能的NO3RR催化剂。在这里,我们制备了超细Cu2O颗粒,并通过控制框架部分的自我牺牲,将其封装在含有配位不饱和Cu2+节点的金属有机框架(mof)中。复合催化剂对NO3RR具有良好的催化性能,NH3产率为6.35 mmol h−1 mgcat−1,法拉第效率为98.6%。密度泛函理论(DFT)计算表明,不饱和Cu2+节点和纳米颗粒之间的协同效应显著降低了所有中间体的势能,从而促进了硝酸盐向氨的有效转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信