Climate effects of a future net forestation scenario in CMIP6 models

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
James L. Gomez, Robert J. Allen, Larry W. Horowitz, Steven T. Turnock, Rosie A. Fisher, Olivia E. Clifton, Bryan K. Mignone, Elena Shevliakova, Sergey Malyshev
{"title":"Climate effects of a future net forestation scenario in CMIP6 models","authors":"James L. Gomez, Robert J. Allen, Larry W. Horowitz, Steven T. Turnock, Rosie A. Fisher, Olivia E. Clifton, Bryan K. Mignone, Elena Shevliakova, Sergey Malyshev","doi":"10.1038/s41612-025-01127-4","DOIUrl":null,"url":null,"abstract":"<p>Forestation may reduce temperatures by lowering atmospheric CO<sub>2</sub>. However, biogeophysical changes from forestation may weaken this cooling. We use twelve Coupled Model Intercomparison Project (CMIP6) models to quantify the biogeochemical (carbon cycle) and biogeophysical (non-carbon cycle) effects of net forestation, as quantified as the difference between the end of two future scenarios: ssp370-ssp126Lu and ssp370. Biogeochemical effects have an inferred global multi-model mean cooling (−0.08 ± 0.02 K). Changes in fires have no significant effect on land carbon storage globally. In contrast with studies indicating biogeophysical impacts counteract biogeochemical impacts by up to 50%, we find that biogeophysical effects lead to insignificant global mean cooling (−0.002 ± 0.041 K). Tropical land shows cooling (−0.058 ± 0.058 K) with eight of twelve models indicating cooling, consistent with prior studies. Using the Surface Energy Balance Decomposition, we find cooling is primarily from increased evapotranspiration and decreased downwelling solar radiation related to clouds and aerosols.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"27 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01127-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Forestation may reduce temperatures by lowering atmospheric CO2. However, biogeophysical changes from forestation may weaken this cooling. We use twelve Coupled Model Intercomparison Project (CMIP6) models to quantify the biogeochemical (carbon cycle) and biogeophysical (non-carbon cycle) effects of net forestation, as quantified as the difference between the end of two future scenarios: ssp370-ssp126Lu and ssp370. Biogeochemical effects have an inferred global multi-model mean cooling (−0.08 ± 0.02 K). Changes in fires have no significant effect on land carbon storage globally. In contrast with studies indicating biogeophysical impacts counteract biogeochemical impacts by up to 50%, we find that biogeophysical effects lead to insignificant global mean cooling (−0.002 ± 0.041 K). Tropical land shows cooling (−0.058 ± 0.058 K) with eight of twelve models indicating cooling, consistent with prior studies. Using the Surface Energy Balance Decomposition, we find cooling is primarily from increased evapotranspiration and decreased downwelling solar radiation related to clouds and aerosols.

Abstract Image

CMIP6模式下未来净造林情景的气候效应
植树造林可以通过降低大气中的二氧化碳来降低气温。然而,造林带来的生物地球物理变化可能会削弱这种冷却。我们使用12个耦合模式比对项目(CMIP6)模型量化净造林的生物地球化学(碳循环)和生物地球物理(非碳循环)效应,量化为两个未来情景:ssp370- ssp126lu和ssp370结束时的差异。生物地球化学效应导致全球多模式平均降温(- 0.08±0.02 K)。全球范围内,火灾变化对土地碳储量没有显著影响。与生物地球物理影响抵消生物地球化学影响高达50%的研究相反,我们发现生物地球物理效应导致全球平均降温(- 0.002±0.041 K)微不足道。热带陆地显示变冷(- 0.058±0.058 K), 12个模式中有8个模式显示变冷,与先前的研究一致。利用地表能量平衡分解,我们发现冷却主要是由于与云和气溶胶相关的蒸发蒸腾增加和下降的太阳辐射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信