When ultrathin carbon layer system chemistry dictates the tribo-interface: Origin of slippery and wear-resistant surfaces

IF 8.2 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Rajesh Kumar, Pankaj Bharti, Reuben J. Yeo, Avanish K. Srivastava, Chetna Dhand, Neeraj Dwivedi
{"title":"When ultrathin carbon layer system chemistry dictates the tribo-interface: Origin of slippery and wear-resistant surfaces","authors":"Rajesh Kumar, Pankaj Bharti, Reuben J. Yeo, Avanish K. Srivastava, Chetna Dhand, Neeraj Dwivedi","doi":"10.26599/frict.2025.9441061","DOIUrl":null,"url":null,"abstract":" <p>Overcoats are predominantly employed to tackle tribological challenges in numerous moving mechanical systems. However, when overcoats are thinned down to sub-10 nm levels, their performance gets significantly compromised because of the dominance of surface and interface effects. Here, we discovered the efficacy of the chemistry of sub-10 nm thick carbon-based overcoats in regulating the friction and wear of rough ceramic surfaces, particularly those of Al<sub>2</sub>O<sub>3</sub>+TiC (AlTiC). Carbon overcoats up to 4 nm in thickness grown with low-energy (~4–5 eV) atoms/ions caused no significant changes in the tribological performance of AlTiC. However, carbon overcoats grown at a moderate energy of 90 eV experienced an exceptional reduction in friction and wear of AlTiC at similar thickness levels up to 4 nm. The addition of a 6 nm thick RF-sputtered carbon layer on top of these carbon overcoats caused no significant improvement in the tribological performance. However, the addition of a multilayer graphene overlayer was found to slightly reduce the friction further for the thicker carbon overcoats grown at 90 eV. Chemical bonding and carbon microstructural analyses, along with ion interaction simulations, were performed to elucidate the fundamental mechanisms behind the observed friction and wear performances. We discovered that the atomic mixing and high sp<sup>3</sup> bonding caused by the 90 eV growth process primarily dictated the friction and wear control at ≤ 10 nm overcoat thicknesses. Thus, by adopting suitable carbon overcoat technology, excellent tribological properties can be attained even at sub-5 nm overcoat thickness levels, which is critical for numerous applications.</p> ","PeriodicalId":12442,"journal":{"name":"Friction","volume":"20 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441061","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Overcoats are predominantly employed to tackle tribological challenges in numerous moving mechanical systems. However, when overcoats are thinned down to sub-10 nm levels, their performance gets significantly compromised because of the dominance of surface and interface effects. Here, we discovered the efficacy of the chemistry of sub-10 nm thick carbon-based overcoats in regulating the friction and wear of rough ceramic surfaces, particularly those of Al2O3+TiC (AlTiC). Carbon overcoats up to 4 nm in thickness grown with low-energy (~4–5 eV) atoms/ions caused no significant changes in the tribological performance of AlTiC. However, carbon overcoats grown at a moderate energy of 90 eV experienced an exceptional reduction in friction and wear of AlTiC at similar thickness levels up to 4 nm. The addition of a 6 nm thick RF-sputtered carbon layer on top of these carbon overcoats caused no significant improvement in the tribological performance. However, the addition of a multilayer graphene overlayer was found to slightly reduce the friction further for the thicker carbon overcoats grown at 90 eV. Chemical bonding and carbon microstructural analyses, along with ion interaction simulations, were performed to elucidate the fundamental mechanisms behind the observed friction and wear performances. We discovered that the atomic mixing and high sp3 bonding caused by the 90 eV growth process primarily dictated the friction and wear control at ≤ 10 nm overcoat thicknesses. Thus, by adopting suitable carbon overcoat technology, excellent tribological properties can be attained even at sub-5 nm overcoat thickness levels, which is critical for numerous applications.

Abstract Image

当超薄碳层系统化学决定摩擦界面:光滑和耐磨表面的起源
外套主要用于解决许多移动机械系统中的摩擦学挑战。然而,当涂层减薄到10纳米以下的水平时,由于表面和界面效应的主导作用,它们的性能会受到显著影响。在这里,我们发现了低于10 nm厚的碳基涂层在调节粗糙陶瓷表面,特别是Al2O3+TiC (AlTiC)表面的摩擦和磨损方面的化学作用。用低能(~4 - 5 eV)原子/离子生长厚度达4 nm的碳包层对AlTiC的摩擦学性能没有显著影响。然而,在90 eV的中等能量下生长的碳涂层,在高达4 nm的相似厚度下,AlTiC的摩擦和磨损显著减少。在这些碳涂层上添加6 nm厚的射频溅射碳层对摩擦学性能没有显著改善。然而,对于在90ev下生长的较厚的碳包层,发现添加多层石墨烯包层可以略微降低摩擦。通过化学键和碳微观结构分析,以及离子相互作用模拟,阐明了观察到的摩擦和磨损性能背后的基本机制。我们发现,由90 eV生长过程引起的原子混合和高sp3键合主要决定了涂层厚度≤10 nm时的摩擦和磨损控制。因此,通过采用合适的碳涂层技术,即使在低于5纳米的涂层厚度水平上也可以获得优异的摩擦学性能,这对于许多应用来说是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信