Falko Schmidt, Carlos David González-Gómez, Marc Sulliger, Emilio Ruiz-Reina, Raúl A. Rica-Alarcón, Jaime Ortega Arroyo, Romain Quidant
{"title":"Three-dimensional optofluidic control using reconfigurable thermal barriers","authors":"Falko Schmidt, Carlos David González-Gómez, Marc Sulliger, Emilio Ruiz-Reina, Raúl A. Rica-Alarcón, Jaime Ortega Arroyo, Romain Quidant","doi":"10.1038/s41566-025-01731-z","DOIUrl":null,"url":null,"abstract":"<p>Microfluidics allows for the precise control of small sample volumes through spatial confinement and exact routing of fluids. Usually, this is achieved by physical barriers. However, the rigidity of these barriers limits flexibility in certain applications. We introduce an optofluidic approach that leverages structured light and photothermal conversion to create dynamic, reconfigurable fluidic boundaries that can be easily integrated in existing setups. This system enables the controlled manipulation of fluids and particles by generating adjustable three-dimensional thermal landscapes. We demonstrate that our reconfigurable approach replicates the functions of traditional barriers and allows real-time adjustments for tasks such as individual particle steering and size-based sorting in heterogeneous mixtures. These results highlight the potential for adaptive and multifunctional microfluidic systems in applications such as chemical synthesis, lab-on-chip devices and microbiology.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"152 1","pages":""},"PeriodicalIF":32.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01731-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidics allows for the precise control of small sample volumes through spatial confinement and exact routing of fluids. Usually, this is achieved by physical barriers. However, the rigidity of these barriers limits flexibility in certain applications. We introduce an optofluidic approach that leverages structured light and photothermal conversion to create dynamic, reconfigurable fluidic boundaries that can be easily integrated in existing setups. This system enables the controlled manipulation of fluids and particles by generating adjustable three-dimensional thermal landscapes. We demonstrate that our reconfigurable approach replicates the functions of traditional barriers and allows real-time adjustments for tasks such as individual particle steering and size-based sorting in heterogeneous mixtures. These results highlight the potential for adaptive and multifunctional microfluidic systems in applications such as chemical synthesis, lab-on-chip devices and microbiology.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.