{"title":"Robust entanglement buffers based on SWAP interactions","authors":"Ye-Chao Liu, Otfried Gühne and Stefan Nimmrichter","doi":"10.1088/2058-9565/adf2d7","DOIUrl":null,"url":null,"abstract":"Quantum entanglement is the essential resource for quantum communication and distributed information processing in a quantum network. However, the remote generation over a network suffers from inevitable transmission loss and other technical difficulties. This paper introduces the concept of entanglement buffers as a potential primitive for preparing long-distance entanglement. We investigate the filling of entanglement buffers with either one Bell state or a stream of Bell states via SWAP interactions. We illustrate their resilience to imperfect interactions, noise, and losses, making the buffers suitable for a realistic quantum network scenario. Additionally, larger entanglement buffers can always enhance these benefits.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf2d7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum entanglement is the essential resource for quantum communication and distributed information processing in a quantum network. However, the remote generation over a network suffers from inevitable transmission loss and other technical difficulties. This paper introduces the concept of entanglement buffers as a potential primitive for preparing long-distance entanglement. We investigate the filling of entanglement buffers with either one Bell state or a stream of Bell states via SWAP interactions. We illustrate their resilience to imperfect interactions, noise, and losses, making the buffers suitable for a realistic quantum network scenario. Additionally, larger entanglement buffers can always enhance these benefits.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.