Robust entanglement buffers based on SWAP interactions

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ye-Chao Liu, Otfried Gühne and Stefan Nimmrichter
{"title":"Robust entanglement buffers based on SWAP interactions","authors":"Ye-Chao Liu, Otfried Gühne and Stefan Nimmrichter","doi":"10.1088/2058-9565/adf2d7","DOIUrl":null,"url":null,"abstract":"Quantum entanglement is the essential resource for quantum communication and distributed information processing in a quantum network. However, the remote generation over a network suffers from inevitable transmission loss and other technical difficulties. This paper introduces the concept of entanglement buffers as a potential primitive for preparing long-distance entanglement. We investigate the filling of entanglement buffers with either one Bell state or a stream of Bell states via SWAP interactions. We illustrate their resilience to imperfect interactions, noise, and losses, making the buffers suitable for a realistic quantum network scenario. Additionally, larger entanglement buffers can always enhance these benefits.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf2d7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum entanglement is the essential resource for quantum communication and distributed information processing in a quantum network. However, the remote generation over a network suffers from inevitable transmission loss and other technical difficulties. This paper introduces the concept of entanglement buffers as a potential primitive for preparing long-distance entanglement. We investigate the filling of entanglement buffers with either one Bell state or a stream of Bell states via SWAP interactions. We illustrate their resilience to imperfect interactions, noise, and losses, making the buffers suitable for a realistic quantum network scenario. Additionally, larger entanglement buffers can always enhance these benefits.
基于SWAP相互作用的鲁棒纠缠缓冲
量子纠缠是量子网络中量子通信和分布式信息处理的重要资源。然而,网络上的远程发电存在不可避免的传输损耗和其他技术难题。本文介绍了纠缠缓冲的概念,作为准备长距离纠缠的潜在原语。我们研究了通过SWAP相互作用填充一个贝尔态或一个贝尔态流的纠缠缓冲。我们说明了它们对不完美相互作用、噪声和损失的弹性,使缓冲适合于现实的量子网络场景。此外,更大的缠结缓冲总是可以增强这些好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信