Yuhang Dai, Wenjia Du, Haobo Dong, Xuan Gao, Chang Su, Partha P. Paul, Bratislav Lukic, Chengyi Zhang, Chumei Ye, Jinghao Li, Wei Zong, Jianwei Li, Yiyang Liu, Alexander Rack, Liqiang Mai, Paul R. Shearing, Guanjie He
{"title":"Mitigating ion flux vortex enables reversible zinc electrodeposition","authors":"Yuhang Dai, Wenjia Du, Haobo Dong, Xuan Gao, Chang Su, Partha P. Paul, Bratislav Lukic, Chengyi Zhang, Chumei Ye, Jinghao Li, Wei Zong, Jianwei Li, Yiyang Liu, Alexander Rack, Liqiang Mai, Paul R. Shearing, Guanjie He","doi":"10.1038/s41467-025-62470-x","DOIUrl":null,"url":null,"abstract":"<p>Metal anodes hold considerable promise for high-energy-density batteries but are fundamentally limited by electrochemical irreversibility caused by uneven metal deposition and dendrite formation, which compromise battery lifespan and safety. The chaotic ion flow (or ion flux vortex) near the electrode surface, driving these instabilities, has remained elusive due to limitations in conventional techniques such as scanning electron and atomic force microscopies, which are invasive and incapable of probing internal structures of deposits. Here, we employ in-situ X-ray computed tomography (CT) to non-destructively visualize Zn deposition on LAPONITE-coated Zn anodes, thereby revealing the internal structural evolution and deposition orientation. Combined with computational fluid dynamics simulations, we demonstrate that the LAPONITE coating, with its separated positive and negative charge centers, suppresses ionic vortex formation, guiding uniform, dense, and vertically aligned Zn growth along (100) plane, thereby significantly mitigating dendrite growth. This translates into a 3.17-Ah Zn-MnO<sub>2</sub> pouch cell with stable performance over 100 cycles, offering a viable path toward scalable, high-performance metal-anode batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"736 1","pages":"7312"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62470-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Metal anodes hold considerable promise for high-energy-density batteries but are fundamentally limited by electrochemical irreversibility caused by uneven metal deposition and dendrite formation, which compromise battery lifespan and safety. The chaotic ion flow (or ion flux vortex) near the electrode surface, driving these instabilities, has remained elusive due to limitations in conventional techniques such as scanning electron and atomic force microscopies, which are invasive and incapable of probing internal structures of deposits. Here, we employ in-situ X-ray computed tomography (CT) to non-destructively visualize Zn deposition on LAPONITE-coated Zn anodes, thereby revealing the internal structural evolution and deposition orientation. Combined with computational fluid dynamics simulations, we demonstrate that the LAPONITE coating, with its separated positive and negative charge centers, suppresses ionic vortex formation, guiding uniform, dense, and vertically aligned Zn growth along (100) plane, thereby significantly mitigating dendrite growth. This translates into a 3.17-Ah Zn-MnO2 pouch cell with stable performance over 100 cycles, offering a viable path toward scalable, high-performance metal-anode batteries.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.