Mitigating ion flux vortex enables reversible zinc electrodeposition

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuhang Dai, Wenjia Du, Haobo Dong, Xuan Gao, Chang Su, Partha P. Paul, Bratislav Lukic, Chengyi Zhang, Chumei Ye, Jinghao Li, Wei Zong, Jianwei Li, Yiyang Liu, Alexander Rack, Liqiang Mai, Paul R. Shearing, Guanjie He
{"title":"Mitigating ion flux vortex enables reversible zinc electrodeposition","authors":"Yuhang Dai, Wenjia Du, Haobo Dong, Xuan Gao, Chang Su, Partha P. Paul, Bratislav Lukic, Chengyi Zhang, Chumei Ye, Jinghao Li, Wei Zong, Jianwei Li, Yiyang Liu, Alexander Rack, Liqiang Mai, Paul R. Shearing, Guanjie He","doi":"10.1038/s41467-025-62470-x","DOIUrl":null,"url":null,"abstract":"<p>Metal anodes hold considerable promise for high-energy-density batteries but are fundamentally limited by electrochemical irreversibility caused by uneven metal deposition and dendrite formation, which compromise battery lifespan and safety. The chaotic ion flow (or ion flux vortex) near the electrode surface, driving these instabilities, has remained elusive due to limitations in conventional techniques such as scanning electron and atomic force microscopies, which are invasive and incapable of probing internal structures of deposits. Here, we employ in-situ X-ray computed tomography (CT) to non-destructively visualize Zn deposition on LAPONITE-coated Zn anodes, thereby revealing the internal structural evolution and deposition orientation. Combined with computational fluid dynamics simulations, we demonstrate that the LAPONITE coating, with its separated positive and negative charge centers, suppresses ionic vortex formation, guiding uniform, dense, and vertically aligned Zn growth along (100) plane, thereby significantly mitigating dendrite growth. This translates into a 3.17-Ah Zn-MnO<sub>2</sub> pouch cell with stable performance over 100 cycles, offering a viable path toward scalable, high-performance metal-anode batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"736 1","pages":"7312"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62470-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metal anodes hold considerable promise for high-energy-density batteries but are fundamentally limited by electrochemical irreversibility caused by uneven metal deposition and dendrite formation, which compromise battery lifespan and safety. The chaotic ion flow (or ion flux vortex) near the electrode surface, driving these instabilities, has remained elusive due to limitations in conventional techniques such as scanning electron and atomic force microscopies, which are invasive and incapable of probing internal structures of deposits. Here, we employ in-situ X-ray computed tomography (CT) to non-destructively visualize Zn deposition on LAPONITE-coated Zn anodes, thereby revealing the internal structural evolution and deposition orientation. Combined with computational fluid dynamics simulations, we demonstrate that the LAPONITE coating, with its separated positive and negative charge centers, suppresses ionic vortex formation, guiding uniform, dense, and vertically aligned Zn growth along (100) plane, thereby significantly mitigating dendrite growth. This translates into a 3.17-Ah Zn-MnO2 pouch cell with stable performance over 100 cycles, offering a viable path toward scalable, high-performance metal-anode batteries.

Abstract Image

缓解离子通量漩涡,实现可逆锌电沉积
金属阳极在高能量密度电池中具有相当大的前景,但由于金属沉积不均匀和枝晶形成导致的电化学不可逆性,从根本上限制了金属阳极的使用寿命和安全性。由于扫描电子和原子力显微镜等传统技术的局限性,电极表面附近的混沌离子流(或离子流漩涡)驱动这些不稳定性仍然难以捉摸,这些技术具有侵入性,无法探测沉积物的内部结构。在这里,我们使用原位x射线计算机断层扫描(CT)来非破坏性地观察laponite涂层Zn阳极上的Zn沉积,从而揭示内部结构演变和沉积方向。结合计算流体动力学模拟,我们证明了正负电荷中心分离的LAPONITE涂层抑制离子涡的形成,引导Zn沿(100)平面均匀、致密、垂直排列的生长,从而显著减缓了枝晶的生长。这转化为3.17 ah的Zn-MnO2袋电池,具有超过100次循环的稳定性能,为可扩展的高性能金属阳极电池提供了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信