Enhancing Gen3 for clinical trial time series analytics and data discovery: a data commons framework for NIH clinical trials.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-07-23 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1570009
Meredith C B Adams, Colin Griffin, Hunter Adams, Stephen Bryant, Robert W Hurley, Umit Topaloglu
{"title":"Enhancing Gen3 for clinical trial time series analytics and data discovery: a data commons framework for NIH clinical trials.","authors":"Meredith C B Adams, Colin Griffin, Hunter Adams, Stephen Bryant, Robert W Hurley, Umit Topaloglu","doi":"10.3389/fdgth.2025.1570009","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a framework for enhancing Gen3, an open-source data commons platform, with temporal visualization capabilities for clinical trial research. We describe the technical implementation of cloud-native architecture and integrated visualization tools that enable standardized analytics for longitudinal clinical trial data while adhering to FAIR principles. The enhancement includes Kubernetes-based container orchestration, Kibana-based temporal analytics, and automated ETL pipelines for data harmonization. Technical validation demonstrates reliable handling of varied time-based data structures, while maintaining temporal precision and measurement context. The framework's implementation in NIH HEAL Initiative networks studying chronic pain and substance use disorders showcases its utility for real-time monitoring of longitudinal outcomes across multiple trials. This adaptation provides a model for research networks seeking to enhance their data commons capabilities while ensuring findable, accessible, interoperable, and reusable clinical trial data.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1570009"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1570009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a framework for enhancing Gen3, an open-source data commons platform, with temporal visualization capabilities for clinical trial research. We describe the technical implementation of cloud-native architecture and integrated visualization tools that enable standardized analytics for longitudinal clinical trial data while adhering to FAIR principles. The enhancement includes Kubernetes-based container orchestration, Kibana-based temporal analytics, and automated ETL pipelines for data harmonization. Technical validation demonstrates reliable handling of varied time-based data structures, while maintaining temporal precision and measurement context. The framework's implementation in NIH HEAL Initiative networks studying chronic pain and substance use disorders showcases its utility for real-time monitoring of longitudinal outcomes across multiple trials. This adaptation provides a model for research networks seeking to enhance their data commons capabilities while ensuring findable, accessible, interoperable, and reusable clinical trial data.

Abstract Image

Abstract Image

Abstract Image

增强Gen3临床试验时间序列分析和数据发现:NIH临床试验的数据共享框架。
这项工作提出了一个框架,用于增强Gen3,一个开源数据共享平台,具有临床试验研究的时间可视化能力。我们描述了云原生架构和集成可视化工具的技术实现,这些工具能够在遵守FAIR原则的同时对纵向临床试验数据进行标准化分析。该增强包括基于kubernetes的容器编排、基于kibana的时态分析以及用于数据协调的自动化ETL管道。技术验证演示了对各种基于时间的数据结构的可靠处理,同时保持了时间精度和测量上下文。该框架在研究慢性疼痛和物质使用障碍的NIH HEAL倡议网络中的实施,展示了它在多个试验中实时监测纵向结果的效用。这种适应为研究网络提供了一个模型,以寻求增强其数据共享能力,同时确保可查找、可访问、可互操作和可重用临床试验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信