Artificial Intelligence in Cardiovascular Imaging: Current Landscape, Clinical Impact, and Future Directions.

Discoveries (Craiova, Romania) Pub Date : 2025-06-30 eCollection Date: 2025-04-01 DOI:10.15190/d.2025.10
Sudeep Edpuganti, Amna Shamim, Vilina Hemant Gangolli, Ranasinghe Arachchige Dona Kashmira Nawodi Weerasekara, Amulya Yellamilli
{"title":"Artificial Intelligence in Cardiovascular Imaging: Current Landscape, Clinical Impact, and Future Directions.","authors":"Sudeep Edpuganti, Amna Shamim, Vilina Hemant Gangolli, Ranasinghe Arachchige Dona Kashmira Nawodi Weerasekara, Amulya Yellamilli","doi":"10.15190/d.2025.10","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular (CV) imaging is rapidly transforming with the advent of artificial intelligence (AI), automating and augmenting diagnostic pipelines in echocardiography, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging. In this review, we summarize recent developments in convolutional neural networks for real-time echocardiographic interpretation, deep learning for coronary artery calcium scoring that achieves near-perfect agreement with manual methods, and AI-driven plaque quantification and stenosis detection on coronary CT angiography, which achieves an accuracy of ≥ 96%. FDA-approved platforms (e.g., Aidoc, HeartFlow, Caption Health) emphasize clinical translation, while automated segmentation and perfusion analysis in cardiac MRI produce Dice coefficients ≥ 0.93. We critically analyze persistent issues, algorithmic bias, explainability, data privacy, regulatory heterogeneity, and medico-legal liability. We also discuss risk-reduction tactics, such as federated learning and human-in-the-loop oversight. Reactive diagnostics will allow proactive, personalized treatment in the future, assuming we look ahead, thanks to multimodal AI, wearable sensors, and predictive analytics. For AI to fully optimize cardiovascular care, thorough validation, open algorithmic design, and interdisciplinary cooperation will be necessary.</p>","PeriodicalId":72829,"journal":{"name":"Discoveries (Craiova, Romania)","volume":"13 1","pages":"e211"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discoveries (Craiova, Romania)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15190/d.2025.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular (CV) imaging is rapidly transforming with the advent of artificial intelligence (AI), automating and augmenting diagnostic pipelines in echocardiography, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging. In this review, we summarize recent developments in convolutional neural networks for real-time echocardiographic interpretation, deep learning for coronary artery calcium scoring that achieves near-perfect agreement with manual methods, and AI-driven plaque quantification and stenosis detection on coronary CT angiography, which achieves an accuracy of ≥ 96%. FDA-approved platforms (e.g., Aidoc, HeartFlow, Caption Health) emphasize clinical translation, while automated segmentation and perfusion analysis in cardiac MRI produce Dice coefficients ≥ 0.93. We critically analyze persistent issues, algorithmic bias, explainability, data privacy, regulatory heterogeneity, and medico-legal liability. We also discuss risk-reduction tactics, such as federated learning and human-in-the-loop oversight. Reactive diagnostics will allow proactive, personalized treatment in the future, assuming we look ahead, thanks to multimodal AI, wearable sensors, and predictive analytics. For AI to fully optimize cardiovascular care, thorough validation, open algorithmic design, and interdisciplinary cooperation will be necessary.

Abstract Image

人工智能在心血管成像中的应用:现状、临床影响和未来方向。
随着人工智能(AI)的出现,心血管(CV)成像正在迅速改变,超声心动图、计算机断层扫描(CT)、磁共振成像(MRI)和核成像的诊断管道自动化和增强。在这篇综述中,我们总结了卷积神经网络用于实时超声心动图解释的最新进展,用于冠状动脉钙评分的深度学习与人工方法接近完美的一致,以及人工智能驱动的冠状动脉CT血管造影斑块量化和狭窄检测的最新进展,其准确性达到≥96%。fda批准的平台(如Aidoc、HeartFlow、Caption Health)强调临床翻译,而心脏MRI的自动分割和灌注分析产生的Dice系数≥0.93。我们批判性地分析了持续存在的问题、算法偏见、可解释性、数据隐私、监管异质性和医疗法律责任。我们还讨论了降低风险的策略,例如联邦学习和人在循环中的监督。如果我们展望未来,得益于多模式人工智能、可穿戴传感器和预测分析,反应性诊断将在未来实现主动、个性化的治疗。人工智能要充分优化心血管护理,还需要彻底的验证、开放的算法设计和跨学科的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信