{"title":"NADH reductive stress drives metabolic reprogramming.","authors":"Ronghui Yang, Zihao Guo, Binghui Li","doi":"10.1016/j.tcb.2025.07.005","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular metabolism is intricately regulated by redox signaling, with the NADH/NAD<sup>+</sup> couple serving as a central hub. Emerging evidence reveals that NADH reductive stress, marked by NADH accumulation, is not merely a passive byproduct of metabolic dysfunction but an active regulatory signal driving metabolic reprogramming. In this Review, we synthesize recent advances in understanding NADH reductive stress, including its origins, regulatory mechanism, and manipulation. We examine its broad impact on cellular metabolism, its interplay with oxidative and energy stress, and its pathogenic roles in a range of diseases. By integrating these findings, we propose NADH reductive stress as a master regulator for metabolic reprogramming and highlight new avenues for mechanistic exploration and therapeutic intervention.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":18.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2025.07.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular metabolism is intricately regulated by redox signaling, with the NADH/NAD+ couple serving as a central hub. Emerging evidence reveals that NADH reductive stress, marked by NADH accumulation, is not merely a passive byproduct of metabolic dysfunction but an active regulatory signal driving metabolic reprogramming. In this Review, we synthesize recent advances in understanding NADH reductive stress, including its origins, regulatory mechanism, and manipulation. We examine its broad impact on cellular metabolism, its interplay with oxidative and energy stress, and its pathogenic roles in a range of diseases. By integrating these findings, we propose NADH reductive stress as a master regulator for metabolic reprogramming and highlight new avenues for mechanistic exploration and therapeutic intervention.
期刊介绍:
Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.