Evaluating Machine Learning for Predicting Youth Suicidal Behavior Up to 1 Year After Contact With Mental-Health Specialty Care.

IF 4.1 2区 医学 Q1 PSYCHIATRY
Clinical Psychological Science Pub Date : 2025-05-01 Epub Date: 2024-12-20 DOI:10.1177/21677026241301298
Lauren M O'Reilly, Seena Fazel, Martin E Rickert, Ralf Kuja-Halkola, Martin Cederlof, Clara Hellner, Henrik Larsson, Paul Lichtenstein, Brian M D'Onofrio
{"title":"Evaluating Machine Learning for Predicting Youth Suicidal Behavior Up to 1 Year After Contact With Mental-Health Specialty Care.","authors":"Lauren M O'Reilly, Seena Fazel, Martin E Rickert, Ralf Kuja-Halkola, Martin Cederlof, Clara Hellner, Henrik Larsson, Paul Lichtenstein, Brian M D'Onofrio","doi":"10.1177/21677026241301298","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we assessed the performance of several predictive modeling algorithms of suicide attempt resulting in inpatient hospitalization or suicide among youths ages 9 to 18 (<i>N</i> = 34,528) after contact (6-12 months) with a mental-health specialist in Stockholm, Sweden, from 2006 to 2012. Using 209 predictors across domains (e.g., clinical, demographic, family, neighborhood, social) identified from national registers, we applied standard logistic regression, regularized logistic regression, and machine-learning algorithms (i.e., random forests, gradient boosting, support vector machines). Standard logistic regression (area under the receiver operating characteristic curve [AUC] = 0.77, 95% confidence interval [CI] = [0.72, 0.82]) and random-forest models (AUC = 0.80, 95% CI = [0.74, 0.86]) demonstrated the highest AUCs. Sensitivities ranged from 0.33 (support vector machines) to 0.91 (standard logistic regression). Although the study was underpowered to detect a difference between logistic regression and machinelearning algorithms (outcome prevalence = 0.7%), performance metrics were similar across models. Logistic regression is not clearly worse than machine-learning approaches. Ongoing research is needed to examine how prediction models can augment clinical decision-making.</p>","PeriodicalId":54234,"journal":{"name":"Clinical Psychological Science","volume":"13 3","pages":"614-631"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Psychological Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21677026241301298","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we assessed the performance of several predictive modeling algorithms of suicide attempt resulting in inpatient hospitalization or suicide among youths ages 9 to 18 (N = 34,528) after contact (6-12 months) with a mental-health specialist in Stockholm, Sweden, from 2006 to 2012. Using 209 predictors across domains (e.g., clinical, demographic, family, neighborhood, social) identified from national registers, we applied standard logistic regression, regularized logistic regression, and machine-learning algorithms (i.e., random forests, gradient boosting, support vector machines). Standard logistic regression (area under the receiver operating characteristic curve [AUC] = 0.77, 95% confidence interval [CI] = [0.72, 0.82]) and random-forest models (AUC = 0.80, 95% CI = [0.74, 0.86]) demonstrated the highest AUCs. Sensitivities ranged from 0.33 (support vector machines) to 0.91 (standard logistic regression). Although the study was underpowered to detect a difference between logistic regression and machinelearning algorithms (outcome prevalence = 0.7%), performance metrics were similar across models. Logistic regression is not clearly worse than machine-learning approaches. Ongoing research is needed to examine how prediction models can augment clinical decision-making.

评估机器学习预测青少年自杀行为长达1年后接触心理健康专业护理。
在本文中,我们评估了2006年至2012年期间在瑞典斯德哥尔摩与心理健康专家接触(6-12个月)后,9至18岁青少年(N = 34,528)中自杀企图导致住院或自杀的几种预测建模算法的性能。使用从国家登记册中确定的跨领域(例如,临床,人口统计,家庭,社区,社会)的209个预测因子,我们应用标准逻辑回归,正则化逻辑回归和机器学习算法(即随机森林,梯度增强,支持向量机)。标准logistic回归(受试者工作特征曲线下面积[AUC] = 0.77, 95%可信区间[CI] =[0.72, 0.82])和随机森林模型(AUC = 0.80, 95% CI =[0.74, 0.86])显示出最高的AUC。灵敏度范围从0.33(支持向量机)到0.91(标准逻辑回归)。尽管该研究不足以检测逻辑回归和机器学习算法之间的差异(结果患病率= 0.7%),但各模型的性能指标相似。逻辑回归并不明显比机器学习方法差。需要进行的研究来检验预测模型如何能够增强临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Psychological Science
Clinical Psychological Science Psychology-Clinical Psychology
CiteScore
9.70
自引率
2.10%
发文量
35
期刊介绍: The Association for Psychological Science’s journal, Clinical Psychological Science, emerges from this confluence to provide readers with the best, most innovative research in clinical psychological science, giving researchers of all stripes a home for their work and a place in which to communicate with a broad audience of both clinical and other scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信