{"title":"Exosome Therapy: A Promising Avenue for Treating Intervertebral Disc Degeneration.","authors":"Shreya Bhat, Suresh Kannan, Uday Kumar Kolkundkar, Raviraja Neelavar Seetharam","doi":"10.1007/s13770-025-00746-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The human spine relies on intervertebral discs (IVDs) for support and mobility, functioning as shock absorbers that enable friction-free movement. However, IVDs are susceptible to degeneration (IVDD) due to age, excessive strain, and genetic factors, resulting in bulging or herniation that causes pain, stiffness, and nerve compression.</p><p><strong>Current treatments: </strong>Current treatments primarily focus on symptom management through medication, physical therapy, or surgery in severe cases, without addressing tissue repair.</p><p><strong>Emerging therapies: </strong>Exosome therapy has recently emerged as a promising regenerative approach for IVDD. Exosomes are small, membrane-bound vesicles released by cells, acting as messengers to transport proteins and RNA that influence recipient cell behavior.</p><p><strong>Potential and challenges: </strong>Researchers are investigating exosomes for IVDD because they may promote disc repair and regeneration by delivering molecules that stimulate tissue recovery and carry anti-inflammatory agents to reduce inflammation and modulate pain. Engineering strategies, such as loading exosomes with therapeutic cargo or targeting molecules, can further enhance their efficacy. While exosome therapy for IVDD is still in early research stages, ongoing studies are promising, though challenges remain in optimizing isolation methods and ensuring clinical safety.</p><p><strong>Conclusion: </strong>Exosome-based therapies could offer a safe, effective, and minimally invasive solution for individuals affected by IVDD.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"895-909"},"PeriodicalIF":4.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00746-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The human spine relies on intervertebral discs (IVDs) for support and mobility, functioning as shock absorbers that enable friction-free movement. However, IVDs are susceptible to degeneration (IVDD) due to age, excessive strain, and genetic factors, resulting in bulging or herniation that causes pain, stiffness, and nerve compression.
Current treatments: Current treatments primarily focus on symptom management through medication, physical therapy, or surgery in severe cases, without addressing tissue repair.
Emerging therapies: Exosome therapy has recently emerged as a promising regenerative approach for IVDD. Exosomes are small, membrane-bound vesicles released by cells, acting as messengers to transport proteins and RNA that influence recipient cell behavior.
Potential and challenges: Researchers are investigating exosomes for IVDD because they may promote disc repair and regeneration by delivering molecules that stimulate tissue recovery and carry anti-inflammatory agents to reduce inflammation and modulate pain. Engineering strategies, such as loading exosomes with therapeutic cargo or targeting molecules, can further enhance their efficacy. While exosome therapy for IVDD is still in early research stages, ongoing studies are promising, though challenges remain in optimizing isolation methods and ensuring clinical safety.
Conclusion: Exosome-based therapies could offer a safe, effective, and minimally invasive solution for individuals affected by IVDD.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.