Endometrial Mesenchymal Stem Cell-Derived Exosomal miR-4669 Promotes EMT in Adenomyosis by Inducing M2 Macrophage Polarization via the DUSP6/ERK Pathway.
{"title":"Endometrial Mesenchymal Stem Cell-Derived Exosomal miR-4669 Promotes EMT in Adenomyosis by Inducing M2 Macrophage Polarization via the DUSP6/ERK Pathway.","authors":"Yingying Qiu, Xinjun Wei, Jian Cao, Jindan Wang, Qianru Dou, Fangfang Zhou, Xi Chen, Yongli Liu, Guiping Wan, Meihua Huang, Zhenli Li, Tao Gui","doi":"10.1007/s43032-025-01944-1","DOIUrl":null,"url":null,"abstract":"<p><p>Adenomyosis (AM), a gynecological disorder that severely affects female reproductive health. AM-associated macrophage (AAM) polarization-induced epithelial-mesenchymal transition (EMT) is a key driver of AM progression. In this study, we investigated the role and underlying mechanisms of endometrial mesenchymal stem cell (eMSC)-derived exosomes in regulating AAM polarization and the subsequent EMT of endometrial epithelial cells (EECs). In vitro coculture studies revealed that AM eutopic eMSCs markedly induced M2 macrophage polarization via exosomes and promoted EMT of EECs. Differentially expressed microRNAs (DE-miRNAs) between exosomes derived from normal eMSCs (N-eMSCs) and AM eutopic eMSCs (A-eMSCs) were identified using miRNA sequencing and miR-4669 was found to be the most significantly upregulated miRNA. Internalization of exosomal miR-4669 by macrophages induced their polarization toward the M2 phenotype and promoted the EMT of EECs. Mechanistic analysis using luciferase assay, mRNA sequencing, and rescue experiments revealed that miR-4669 induced M2 macrophage polarization via downregulation of DUSP6 and activation of MAPK/ERK signaling. The polarized M2 macrophages promoted the EMT of ISK cells via TGF-β1 secretion. In an AM xenograft mouse model, miR-4669 depletion inhibited AM progression by targeting the DUSP6/ERK1/2 pathway in macrophages. Overall, AM A-eMSC-derived exosomal miR-4669 facilitates M2 macrophage polarization by targeting the DUSP6/ERK signaling pathway, thereby promoting EMT of EECs via TGF-β1 secretion. These findings open avenues for developing novel preventive and therapeutic strategies for AM.</p>","PeriodicalId":20920,"journal":{"name":"Reproductive Sciences","volume":" ","pages":"2922-2945"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43032-025-01944-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adenomyosis (AM), a gynecological disorder that severely affects female reproductive health. AM-associated macrophage (AAM) polarization-induced epithelial-mesenchymal transition (EMT) is a key driver of AM progression. In this study, we investigated the role and underlying mechanisms of endometrial mesenchymal stem cell (eMSC)-derived exosomes in regulating AAM polarization and the subsequent EMT of endometrial epithelial cells (EECs). In vitro coculture studies revealed that AM eutopic eMSCs markedly induced M2 macrophage polarization via exosomes and promoted EMT of EECs. Differentially expressed microRNAs (DE-miRNAs) between exosomes derived from normal eMSCs (N-eMSCs) and AM eutopic eMSCs (A-eMSCs) were identified using miRNA sequencing and miR-4669 was found to be the most significantly upregulated miRNA. Internalization of exosomal miR-4669 by macrophages induced their polarization toward the M2 phenotype and promoted the EMT of EECs. Mechanistic analysis using luciferase assay, mRNA sequencing, and rescue experiments revealed that miR-4669 induced M2 macrophage polarization via downregulation of DUSP6 and activation of MAPK/ERK signaling. The polarized M2 macrophages promoted the EMT of ISK cells via TGF-β1 secretion. In an AM xenograft mouse model, miR-4669 depletion inhibited AM progression by targeting the DUSP6/ERK1/2 pathway in macrophages. Overall, AM A-eMSC-derived exosomal miR-4669 facilitates M2 macrophage polarization by targeting the DUSP6/ERK signaling pathway, thereby promoting EMT of EECs via TGF-β1 secretion. These findings open avenues for developing novel preventive and therapeutic strategies for AM.
期刊介绍:
Reproductive Sciences (RS) is a peer-reviewed, monthly journal publishing original research and reviews in obstetrics and gynecology. RS is multi-disciplinary and includes research in basic reproductive biology and medicine, maternal-fetal medicine, obstetrics, gynecology, reproductive endocrinology, urogynecology, fertility/infertility, embryology, gynecologic/reproductive oncology, developmental biology, stem cell research, molecular/cellular biology and other related fields.