Junlin Xu, Xiaobo Wen, Yingchun Shao, Qing Liu, Sha Zhou, Li Jiyixuan, Dan Wang, Ying Yang, Han Li, Linyuan Xue, Kunyue Xing, Xiaolin Wu, Dongming Xing
{"title":"Addressing fractures that are hard to diagnose on imaging: Radiomics or deep learning?","authors":"Junlin Xu, Xiaobo Wen, Yingchun Shao, Qing Liu, Sha Zhou, Li Jiyixuan, Dan Wang, Ying Yang, Han Li, Linyuan Xue, Kunyue Xing, Xiaolin Wu, Dongming Xing","doi":"10.1007/s11547-025-02051-6","DOIUrl":null,"url":null,"abstract":"<p><p>Fractures and their complications are recognized as major public health problems. Especially for occult fractures that are difficult to judge radiologically, timely and accurate diagnosis is particularly important for the treatment and prognosis of patients. In recent years, the successful application of radiomics and deep learning in medical diagnosis has shown great potential for providing more timely and accurate diagnostic methods for occult fractures. This review provides an introduction to radiomics and deep learning, summarizes their respective characteristics in detecting occult fractures, and subsequently conducts a detailed analysis on the potential value and future prospects of integrating these two techniques to develop an enhanced approach for prompt and precise detection of occult fractures.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02051-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Fractures and their complications are recognized as major public health problems. Especially for occult fractures that are difficult to judge radiologically, timely and accurate diagnosis is particularly important for the treatment and prognosis of patients. In recent years, the successful application of radiomics and deep learning in medical diagnosis has shown great potential for providing more timely and accurate diagnostic methods for occult fractures. This review provides an introduction to radiomics and deep learning, summarizes their respective characteristics in detecting occult fractures, and subsequently conducts a detailed analysis on the potential value and future prospects of integrating these two techniques to develop an enhanced approach for prompt and precise detection of occult fractures.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.