Aleksei Zamalutdinov, Stepan Boldyrev, Cécile Ben, Laurent Gentzbittel
{"title":"The evaluation of different combinations of enzyme set, aligner and caller in GBS sequencing of soybean.","authors":"Aleksei Zamalutdinov, Stepan Boldyrev, Cécile Ben, Laurent Gentzbittel","doi":"10.1186/s13007-025-01410-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genotype-by-sequencing (GBS) is a cost-effective method for large-scale genotyping, widely used across various species, particularly those with large genomes. A critical aspect of GBS lies in the selection of restriction enzymes for genome digestion and the optimization of data analysis pipelines. However, few studies have comprehensively examined the combined effects of enzyme choice and pipeline configuration.</p><p><strong>Results: </strong>In this study, we created GBS libraries using three commonly used restriction enzyme combinations (HindIII-NlaIII, PstI-MspI, and ApeKI) and assessed multiple SNP-calling pipelines in 15 soybean varieties. We tested four aligners (BWA-MEM, Bowtie2, BBMap, and Strobealign) and seven SNP callers (Bcftools, Stacks, DeepVariant, FreeBayes, VarScan, BBCallVariants, and GATK). Our finding reveal that enzyme choice significantly influences the number of identified SNP, gene localization preferences, and accuracy. Furthermore, the performance of SNP callers varied markedly in terms of SNP count, precision, recall, and false discovery rate (FDR). DeepVariant exhibited the highest accuracy, with 76.0% of its SNPs intersecting with whole-genome sequencing (WGS)-derived SNPs and an FDR of 0.0095, compared to FreeBayes, which had 47.8% intersection and an FDR of 0.6321.</p><p><strong>Conclusions: </strong>Our findings underscore the importance of optimizing both enzyme selection for sequencing libraries and data analysis pipelines to ensure robust and reproducible results. This study provides a general framework for designing large-scale genotyping experiments aimed to specific quality and quantity requirements in various plant species.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"106"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01410-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Genotype-by-sequencing (GBS) is a cost-effective method for large-scale genotyping, widely used across various species, particularly those with large genomes. A critical aspect of GBS lies in the selection of restriction enzymes for genome digestion and the optimization of data analysis pipelines. However, few studies have comprehensively examined the combined effects of enzyme choice and pipeline configuration.
Results: In this study, we created GBS libraries using three commonly used restriction enzyme combinations (HindIII-NlaIII, PstI-MspI, and ApeKI) and assessed multiple SNP-calling pipelines in 15 soybean varieties. We tested four aligners (BWA-MEM, Bowtie2, BBMap, and Strobealign) and seven SNP callers (Bcftools, Stacks, DeepVariant, FreeBayes, VarScan, BBCallVariants, and GATK). Our finding reveal that enzyme choice significantly influences the number of identified SNP, gene localization preferences, and accuracy. Furthermore, the performance of SNP callers varied markedly in terms of SNP count, precision, recall, and false discovery rate (FDR). DeepVariant exhibited the highest accuracy, with 76.0% of its SNPs intersecting with whole-genome sequencing (WGS)-derived SNPs and an FDR of 0.0095, compared to FreeBayes, which had 47.8% intersection and an FDR of 0.6321.
Conclusions: Our findings underscore the importance of optimizing both enzyme selection for sequencing libraries and data analysis pipelines to ensure robust and reproducible results. This study provides a general framework for designing large-scale genotyping experiments aimed to specific quality and quantity requirements in various plant species.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.