Interfacial engineering of Mg3O(CO3)2-bound cobalt nanosheets via one-pot synthesis for PMS-driven water decontamination.

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qing Sun, Yongnan Jiang, Jiale Yu, Jiawei Sheng
{"title":"Interfacial engineering of Mg<sub>3</sub>O(CO<sub>3</sub>)<sub>2</sub>-bound cobalt nanosheets via one-pot synthesis for PMS-driven water decontamination.","authors":"Qing Sun, Yongnan Jiang, Jiale Yu, Jiawei Sheng","doi":"10.1088/1361-6528/adf85a","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic contamination threatens global water security and public health. Peroxymonosulfate (PMS) activation provides an environmentally sustainable approach for water remediation, but conventional cobalt-based catalysts face low atomic utilization and metal leaching issues. Herein, we developed a novel a CoMg/HMTA composite through a one-step hydrothermal method using hexamethylenetetramine (HMTA) and magnesium salts enable the dispersion of cobalt nanosheets on Mg<sub>3</sub>O(CO<sub>3</sub>)<sub>2</sub>substrates. The alkaline carrier Mg<sub>3</sub>O(CO<sub>3</sub>)<sub>2</sub>not only stabilizes Co sites but also minimizes Co leaching (0.18 mg l<sup>-1</sup>). The optimized system achieved 99.6% metronidazole (MNZ) degradation in 30 min and maintained >99% efficiency over six cycles, demonstrating superior catalytic performance. This strategy was generalized to Cu and Ni systems, confirming the universal stabilizing role of Mg-based carriers. Mechanistic studies using EPR spectroscopy and quenching tests revealed a multi-level degradation mechanism involving radicals (SO<sub>4</sub><sup>•-</sup>, O<sub>2</sub><sup>•-</sup>) and non-radicals (<sup>1</sup>O<sub>2</sub>), showing robust performance in various water matrices. This work provides a scalable platform for designing stable persulfate activators against emerging contaminants.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adf85a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic contamination threatens global water security and public health. Peroxymonosulfate (PMS) activation provides an environmentally sustainable approach for water remediation, but conventional cobalt-based catalysts face low atomic utilization and metal leaching issues. Herein, we developed a novel a CoMg/HMTA composite through a one-step hydrothermal method using hexamethylenetetramine (HMTA) and magnesium salts enable the dispersion of cobalt nanosheets on Mg3O(CO3)2substrates. The alkaline carrier Mg3O(CO3)2not only stabilizes Co sites but also minimizes Co leaching (0.18 mg l-1). The optimized system achieved 99.6% metronidazole (MNZ) degradation in 30 min and maintained >99% efficiency over six cycles, demonstrating superior catalytic performance. This strategy was generalized to Cu and Ni systems, confirming the universal stabilizing role of Mg-based carriers. Mechanistic studies using EPR spectroscopy and quenching tests revealed a multi-level degradation mechanism involving radicals (SO4•-, O2•-) and non-radicals (1O2), showing robust performance in various water matrices. This work provides a scalable platform for designing stable persulfate activators against emerging contaminants.

mg30 (CO3)2结合钴纳米片的界面工程:pms驱动的水净化。
抗生素污染威胁着全球水安全和健康。过氧单硫酸盐(PMS)活化为水修复提供了一种环境可持续的方法,但传统的钴基催化剂面临低原子利用率和金属浸出问题。在此,我们利用六亚甲基四胺(HMTA)和镁盐通过一步水热法制备了一种新型的CoMg/HMTA复合材料,使钴纳米片能够分散在mg30 (CO3)2底物上。碱性载体mg30o (CO3)2不仅能稳定Co位点,还能最大限度地减少Co浸出(0.18 mg/L)。优化后的体系在30 min内实现了99.6%的甲硝唑(MNZ)降解,并在6个循环中保持了99%的效率,表现出优异的催化性能。这一策略推广到Cu和Ni体系,证实了mg基载流子的普遍稳定作用。利用EPR光谱和淬灭试验进行的机理研究揭示了涉及自由基(SO4•-,O2•-)和非自由基(1O2)的多级降解机制,在各种水基质中表现出强劲的性能。这项工作为设计稳定的过硫酸盐活化剂对抗新出现的污染物提供了一个可扩展的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信