Afaf Y Khormi, Amani M R Alsaedi, Thoraya A Farghaly, Dina H Dawood
{"title":"Recent Advances in the Therapeutic Prospective of Heterocyclic Derivatives as COX-2 Inhibitors (2019-Present).","authors":"Afaf Y Khormi, Amani M R Alsaedi, Thoraya A Farghaly, Dina H Dawood","doi":"10.2174/0113895575385764250711091807","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is a key contributor to the pathophysiology of various chronic diseases, including cancer, arthritis, cardiovascular disorders, chronic wounds, and gastrointestinal conditions, many of which rank among the leading causes of mortality worldwide, according to the WHO. The prevalence of chronic inflammation-related diseases is projected to rise steadily over the next 30 years, with an estimated three out of five individuals dying daily as a result of such conditions. Consequently, there is a growing demand for the discovery of novel anti-inflammatory agents. Cyclooxygenases play a pivotal role in inflammatory processes, being responsible for the synthesis of prostaglandins. COX-1 is constitutively expressed and primarily associated with \"housekeeping\" physiological functions, whereas COX-2 is an inducible isoform involved in inflammatory responses. Due to its role in inflammation and relatively favorable gastric safety profile compared to traditional NSAIDs, COX-2 has emerged as a significant therapeutic target for inflammation-related disorders. However, the increased risk of stroke and heart attack associated with COX-2 inhibitors has led to the withdrawal of several approved COX-2-targeting drugs from the market. Consequently, the development of new COX-2 inhibitors with potent efficacy and minimal cardiovascular side effects is of critical importance. This review explores a range of oxygen- and nitrogen-containing heterocycles as potential anti-inflammatory agents, emphasizing their COX-2 inhibitory activity, structure-activity relationships, and interactions within the COX-2 active site, as reported in recent studies. The article covers research findings published from 2019 through the first quarter of 2025.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575385764250711091807","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation is a key contributor to the pathophysiology of various chronic diseases, including cancer, arthritis, cardiovascular disorders, chronic wounds, and gastrointestinal conditions, many of which rank among the leading causes of mortality worldwide, according to the WHO. The prevalence of chronic inflammation-related diseases is projected to rise steadily over the next 30 years, with an estimated three out of five individuals dying daily as a result of such conditions. Consequently, there is a growing demand for the discovery of novel anti-inflammatory agents. Cyclooxygenases play a pivotal role in inflammatory processes, being responsible for the synthesis of prostaglandins. COX-1 is constitutively expressed and primarily associated with "housekeeping" physiological functions, whereas COX-2 is an inducible isoform involved in inflammatory responses. Due to its role in inflammation and relatively favorable gastric safety profile compared to traditional NSAIDs, COX-2 has emerged as a significant therapeutic target for inflammation-related disorders. However, the increased risk of stroke and heart attack associated with COX-2 inhibitors has led to the withdrawal of several approved COX-2-targeting drugs from the market. Consequently, the development of new COX-2 inhibitors with potent efficacy and minimal cardiovascular side effects is of critical importance. This review explores a range of oxygen- and nitrogen-containing heterocycles as potential anti-inflammatory agents, emphasizing their COX-2 inhibitory activity, structure-activity relationships, and interactions within the COX-2 active site, as reported in recent studies. The article covers research findings published from 2019 through the first quarter of 2025.
期刊介绍:
The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.
Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.
Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.