{"title":"Lipid accumulation inhibition strategies alleviate Fusobacterium nucleatum-infected colorectal cancer.","authors":"Zhongkun Zhou, Yuqing Niu, Yunhao Ma, Dekui Zhang, Yiqing Wang, Rui Ji, Jianfang Zhao, Chi Ma, Hongmei Zhu, Yingqian Liu, Lixue Tu, Juan Lu, Baizhuo Zhang, Hua Zhang, Xin Ma, Peng Chen","doi":"10.1186/s40168-025-02133-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fusobacterium nucleatum (F. nucleatum) is prevalent in colorectal cancer (CRC), and it can promote proliferation and induce chemoresistance via multiple pathways. The development of treatment strategies for F. nucleatum-infected CRC is of great importance.</p><p><strong>Methods: </strong>Shotgun metagenomic and metabolomic analyses of human feces, as well as metabolomic analysis of human blood, were performed to reveal the dysbiosis and metabolic dysregulation in CRC. Furthermore, the effects of Bifidobacterium animalis (B. animalis) on F. nucleatum and CRC were assessed in vitro and in vivo. Using a mouse CRC model, the function of bile salt hydrolase (BSH) in B. animalis was verified through heterologous expression in Escherichia coli (E. coli). Bile acids and drug library screening experiments were performed to inhibit F. nucleatum and tumor proliferation.</p><p><strong>Results: </strong>We identified an increase in F. nucleatum, enrichment of lipid metabolites, and depletion of Bifidobacterium in CRC patients. Furthermore, B. animalis inhibited F. nucleatum and CRC cells growth in an acid-dependent manner and reduced F. nucleatum-induced tumor increasement in mice. Mechanistically, F. nucleatum caused lipid accumulation, exacerbated inflammation, and intestinal barrier disruption, whereas B. animalis alleviated these changes, increased the Simpson diversity index, reduced lipid metabolites, and altered secondary bile acid composition in mice. Moreover, E. coli-BSH and ursodeoxycholic acid (UDCA) inhibited F. nucleatum-induced lipid accumulation and FASN/CPT1/NF-κB upregulation. Additionally, they alleviated F. nucleatum-related intestinal tumorigenesis in vivo. Targeting F. nucleatum-infected CRC cells and subcutaneous tumors in mice, penfluridol or the combination of orlistat and 5-FU exhibited superior inhibitory effects compared to 5-FU alone.</p><p><strong>Conclusions: </strong>F. nucleatum and lipid metabolites are enriched in CRC patients. Furthermore, BSH-expressing E. coli, UDCA, and penfluridol can alleviate F. nucleatum-induced lipid accumulation and tumor growth in mice. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"181"},"PeriodicalIF":12.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02133-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fusobacterium nucleatum (F. nucleatum) is prevalent in colorectal cancer (CRC), and it can promote proliferation and induce chemoresistance via multiple pathways. The development of treatment strategies for F. nucleatum-infected CRC is of great importance.
Methods: Shotgun metagenomic and metabolomic analyses of human feces, as well as metabolomic analysis of human blood, were performed to reveal the dysbiosis and metabolic dysregulation in CRC. Furthermore, the effects of Bifidobacterium animalis (B. animalis) on F. nucleatum and CRC were assessed in vitro and in vivo. Using a mouse CRC model, the function of bile salt hydrolase (BSH) in B. animalis was verified through heterologous expression in Escherichia coli (E. coli). Bile acids and drug library screening experiments were performed to inhibit F. nucleatum and tumor proliferation.
Results: We identified an increase in F. nucleatum, enrichment of lipid metabolites, and depletion of Bifidobacterium in CRC patients. Furthermore, B. animalis inhibited F. nucleatum and CRC cells growth in an acid-dependent manner and reduced F. nucleatum-induced tumor increasement in mice. Mechanistically, F. nucleatum caused lipid accumulation, exacerbated inflammation, and intestinal barrier disruption, whereas B. animalis alleviated these changes, increased the Simpson diversity index, reduced lipid metabolites, and altered secondary bile acid composition in mice. Moreover, E. coli-BSH and ursodeoxycholic acid (UDCA) inhibited F. nucleatum-induced lipid accumulation and FASN/CPT1/NF-κB upregulation. Additionally, they alleviated F. nucleatum-related intestinal tumorigenesis in vivo. Targeting F. nucleatum-infected CRC cells and subcutaneous tumors in mice, penfluridol or the combination of orlistat and 5-FU exhibited superior inhibitory effects compared to 5-FU alone.
Conclusions: F. nucleatum and lipid metabolites are enriched in CRC patients. Furthermore, BSH-expressing E. coli, UDCA, and penfluridol can alleviate F. nucleatum-induced lipid accumulation and tumor growth in mice. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.