{"title":"A novel m.14677 T > C variant in mitochondrial tRNAGlu gene causes chronic progressive external ophthalmoplegia","authors":"Nahoko Katayama Ueda, Masakazu Mimaki, Shota Ito, Ayuka Murakami, Satoshi Yokoi, Ichizo Nishino, Masahisa Katsuno, Yu-ichi Goto","doi":"10.1038/s10038-025-01381-7","DOIUrl":null,"url":null,"abstract":"Chronic progressive external ophthalmoplegia (CPEO) is a mitochondrial disease characterized by progressive ptosis and ophthalmoplegia, caused by single deletions, point mutations, or multiple deletions in mitochondrial DNA (mtDNA). Most point mutations occur in tRNA genes. Here, we report a novel variant of the tRNAGlu gene associated with CPEO. A 45-year-old male presented with ptosis and external ophthalmoplegia; however, blood test results, including lactate levels and autoantibodies, were normal. CPEO was suspended, prompting additional myopathological examination, mtDNA sequencing analysis, long polymerase chain reaction (PCR) analysis, and single-fiber analysis to compare mutation loads between ragged-red fibers (RRFs) and non-RRFs. Histopathological examination revealed scattered COX-negative RRFs. No deletions were found in the mtDNA. MtDNA sequencing analysis revealed a novel variant, m.14677 T > C, in the tRNAGlu gene, with Sanger sequencing indicating 45% heteroplasmy in the muscle tissue. Single-fiber analysis showed a significantly higher mutation load of m.14677 T > C in RRFs (range: 25.3–92.8%; median: 88.1%; n = 6) compared with non-RRFs (range: 3.5–85.9%; median: 17.1%; n = 5) (P = 0.03). Based on the significantly higher mutation load in RRFs than in non-RRFs, pathological evidence of mitochondrial disease, and the mutation’s occurrence at an evolutionarily conserved site, we concluded that m.14677 T > C, a novel variant of the tRNAGlu gene, is the cause of CPEO. Biochemical and histopathological examinations of muscle tissue, combined with single-fiber analysis, are valuable tools for evaluating mtDNA variants, particularly those within tRNA genes.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"70 10","pages":"537-540"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s10038-025-01381-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-025-01381-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic progressive external ophthalmoplegia (CPEO) is a mitochondrial disease characterized by progressive ptosis and ophthalmoplegia, caused by single deletions, point mutations, or multiple deletions in mitochondrial DNA (mtDNA). Most point mutations occur in tRNA genes. Here, we report a novel variant of the tRNAGlu gene associated with CPEO. A 45-year-old male presented with ptosis and external ophthalmoplegia; however, blood test results, including lactate levels and autoantibodies, were normal. CPEO was suspended, prompting additional myopathological examination, mtDNA sequencing analysis, long polymerase chain reaction (PCR) analysis, and single-fiber analysis to compare mutation loads between ragged-red fibers (RRFs) and non-RRFs. Histopathological examination revealed scattered COX-negative RRFs. No deletions were found in the mtDNA. MtDNA sequencing analysis revealed a novel variant, m.14677 T > C, in the tRNAGlu gene, with Sanger sequencing indicating 45% heteroplasmy in the muscle tissue. Single-fiber analysis showed a significantly higher mutation load of m.14677 T > C in RRFs (range: 25.3–92.8%; median: 88.1%; n = 6) compared with non-RRFs (range: 3.5–85.9%; median: 17.1%; n = 5) (P = 0.03). Based on the significantly higher mutation load in RRFs than in non-RRFs, pathological evidence of mitochondrial disease, and the mutation’s occurrence at an evolutionarily conserved site, we concluded that m.14677 T > C, a novel variant of the tRNAGlu gene, is the cause of CPEO. Biochemical and histopathological examinations of muscle tissue, combined with single-fiber analysis, are valuable tools for evaluating mtDNA variants, particularly those within tRNA genes.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.