Han Wang, Rongru Chen, Josef Schlittenlacher, Carolyn McGettigan, Stuart Rosen, Patti Adank
{"title":"Neural Processing of Noise-Vocoded Speech Under Divided Attention: An fMRI-Machine Learning Study.","authors":"Han Wang, Rongru Chen, Josef Schlittenlacher, Carolyn McGettigan, Stuart Rosen, Patti Adank","doi":"10.1002/hbm.70312","DOIUrl":null,"url":null,"abstract":"<p><p>In real-life interaction, we often need to communicate under challenging conditions, such as when speech is acoustically degraded. This issue is compounded by the fact that our attentional resources are often divided when we simultaneously need to engage in other tasks. The interaction between the perception of degraded speech and simultaneously performing additional cognitive tasks is poorly understood. Here, we combined a dual-task paradigm with functional magnetic resonance imaging (fMRI) and machine learning to establish the neural network supporting degraded speech perception under divided attention. We presented 25 human participants with noise-vocoded sentences while they engaged in a concurrent visuomotor recognition task, employing a factorial design that manipulated both speech degradation and task difficulty. Participants listened to eight-band (easier) and four-band (more difficult) noise-vocoded sentences, while the Gabor task featured two difficulty levels, determined by the angular discrepancy of the target. We employed a machine learning algorithm (Extreme Gradient Boosting, XGBoost) to evaluate the set of brain areas that showed activity predicting the difficulty of the speech and dual tasks. The results illustrated intelligibility-related responses in frontal and cingulate cortices and bilateral insulae induced by divided attention. Machine learning further revealed modality-general and specific responses to speech and visual inputs, in a set of frontotemporal regions reported for domain-general cognitive functions such as attentional control, motor function, and performance monitoring. These results suggest that the management of attentional resources during challenging speech perception recruits a bilateral operculo-frontal network also associated with processing acoustically degraded speech.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 11","pages":"e70312"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70312","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
In real-life interaction, we often need to communicate under challenging conditions, such as when speech is acoustically degraded. This issue is compounded by the fact that our attentional resources are often divided when we simultaneously need to engage in other tasks. The interaction between the perception of degraded speech and simultaneously performing additional cognitive tasks is poorly understood. Here, we combined a dual-task paradigm with functional magnetic resonance imaging (fMRI) and machine learning to establish the neural network supporting degraded speech perception under divided attention. We presented 25 human participants with noise-vocoded sentences while they engaged in a concurrent visuomotor recognition task, employing a factorial design that manipulated both speech degradation and task difficulty. Participants listened to eight-band (easier) and four-band (more difficult) noise-vocoded sentences, while the Gabor task featured two difficulty levels, determined by the angular discrepancy of the target. We employed a machine learning algorithm (Extreme Gradient Boosting, XGBoost) to evaluate the set of brain areas that showed activity predicting the difficulty of the speech and dual tasks. The results illustrated intelligibility-related responses in frontal and cingulate cortices and bilateral insulae induced by divided attention. Machine learning further revealed modality-general and specific responses to speech and visual inputs, in a set of frontotemporal regions reported for domain-general cognitive functions such as attentional control, motor function, and performance monitoring. These results suggest that the management of attentional resources during challenging speech perception recruits a bilateral operculo-frontal network also associated with processing acoustically degraded speech.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.