Chujun Zhang, Qiaoyu Zhang, Qiao Xu, Xinyi Jiang, Yao Ma, Chaoqi Liu, Chang Zhou, Rong Liu, Yun Zhao, Yun Liu
{"title":"Ultrasound targeted microbubbles for theranostic applications in liver diseases: from molecular imaging to targeted therapy.","authors":"Chujun Zhang, Qiaoyu Zhang, Qiao Xu, Xinyi Jiang, Yao Ma, Chaoqi Liu, Chang Zhou, Rong Liu, Yun Zhao, Yun Liu","doi":"10.1080/10717544.2025.2541656","DOIUrl":null,"url":null,"abstract":"<p><p>Liver diseases, particularly chronic conditions leading to cirrhosis and hepatocellular carcinoma, represent a major global health burden with high mortality rates, necessitating innovative diagnostic and therapeutic approaches. Ultrasound-targeted microbubble destruction (UTMD) technology has emerged as a promising theranostic platform, combining enhanced contrast imaging with targeted drug/gene delivery capabilities. When activated by ultrasound, these microbubbles exhibit unique biophysical behaviors that significantly improve drug penetration, tissue perfusion, and site-specific delivery. This review comprehensively examines recent advancements in UTMD-based strategies for liver disease management, including microbubble design and imaging-targeted functionalization, and mechanisms of ultrasound-enhanced drug delivery, especially emerging theranostic applications. We further discuss the underlying biophysical principles governing microbubble-ultrasound interactions and their translational potential, providing insights for developing next-generation precision medicine approaches for hepatic disorders.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2541656"},"PeriodicalIF":8.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2541656","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver diseases, particularly chronic conditions leading to cirrhosis and hepatocellular carcinoma, represent a major global health burden with high mortality rates, necessitating innovative diagnostic and therapeutic approaches. Ultrasound-targeted microbubble destruction (UTMD) technology has emerged as a promising theranostic platform, combining enhanced contrast imaging with targeted drug/gene delivery capabilities. When activated by ultrasound, these microbubbles exhibit unique biophysical behaviors that significantly improve drug penetration, tissue perfusion, and site-specific delivery. This review comprehensively examines recent advancements in UTMD-based strategies for liver disease management, including microbubble design and imaging-targeted functionalization, and mechanisms of ultrasound-enhanced drug delivery, especially emerging theranostic applications. We further discuss the underlying biophysical principles governing microbubble-ultrasound interactions and their translational potential, providing insights for developing next-generation precision medicine approaches for hepatic disorders.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.