Adhesion strength, cell packing density and cell surface buckling in pericellular matrix-mediated tissue cohesion.

IF 3.6 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-08-15 Epub Date: 2025-08-26 DOI:10.1242/dev.204663
Rudolf Winklbauer, Olivia Luu, Debanjan Barua, Martina Nagel, Yunyun Huang
{"title":"Adhesion strength, cell packing density and cell surface buckling in pericellular matrix-mediated tissue cohesion.","authors":"Rudolf Winklbauer, Olivia Luu, Debanjan Barua, Martina Nagel, Yunyun Huang","doi":"10.1242/dev.204663","DOIUrl":null,"url":null,"abstract":"<p><p>Pericellular matrix-mediated cell-cell adhesion in Xenopus gastrula tissues is characterized by a spectrum of narrow and wide cell contacts that alternate with the non-adhesive surfaces of the interstitial space. Here we show, first, that knockdown of a pericellular matrix adhesion molecule, fibronectin, diminishes contact abundance, and hence cell-packing density, without reducing adhesion strength. Second, we find that cell surfaces in gastrula tissues exhibit solid-like behavior in the form of buckling and crumpling, shape modifications that are typically seen in thin elastic films. We propose that both phenomena are explained by generic properties of the pericellular matrix: its compression and consequent stiffening by the interpenetration of matrix layers during adhesive contact formation. We argue that this renders part of the cell surface non-adhesive to form interstitial gaps, and both gap surfaces and contacts prone to buckling and crumpling in line with cell contractility fluctuations. In this elasto-capillary model of tissue cohesion, the size of the interstitial space is determined by the abundance of the pericellular matrix, not by adhesion strength.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204663","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pericellular matrix-mediated cell-cell adhesion in Xenopus gastrula tissues is characterized by a spectrum of narrow and wide cell contacts that alternate with the non-adhesive surfaces of the interstitial space. Here we show, first, that knockdown of a pericellular matrix adhesion molecule, fibronectin, diminishes contact abundance, and hence cell-packing density, without reducing adhesion strength. Second, we find that cell surfaces in gastrula tissues exhibit solid-like behavior in the form of buckling and crumpling, shape modifications that are typically seen in thin elastic films. We propose that both phenomena are explained by generic properties of the pericellular matrix: its compression and consequent stiffening by the interpenetration of matrix layers during adhesive contact formation. We argue that this renders part of the cell surface non-adhesive to form interstitial gaps, and both gap surfaces and contacts prone to buckling and crumpling in line with cell contractility fluctuations. In this elasto-capillary model of tissue cohesion, the size of the interstitial space is determined by the abundance of the pericellular matrix, not by adhesion strength.

细胞周围基质介导的组织内聚中的粘附强度、细胞堆积密度和细胞表面屈曲。
原肠爪蟾组织中细胞周围基质介导的细胞粘附的特征是细胞接触的宽度和宽度与间隙的非粘附表面交替存在。在这里,我们首先表明,细胞周围基质粘附分子纤维连接蛋白的敲除会减少接触丰度,从而减少细胞堆积密度,但不会降低粘附强度。其次,我们发现原肠组织中的细胞表面以屈曲和皱缩的形式表现出类似固体的行为,这是通常在薄弹性薄膜中看到的形状改变。我们认为这两种现象都可以用细胞外基质的一般特性来解释:在粘连形成过程中,细胞外基质层的相互渗透使其压缩并随之变硬。我们认为,这使得部分细胞表面不粘附形成间隙,间隙表面和接触容易随着细胞收缩波动而屈曲和皱缩。在组织内聚的弹性毛细血管模型中,间隙的大小由细胞周围基质的丰度决定,而不是由粘附强度决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信