Jayanta Kumar Patra, Han-Seung Shin, Gitishree Das
{"title":"Seaweed extract as a sustainable resource for Au nanoparticle synthesis and its biological and environmental applications.","authors":"Jayanta Kumar Patra, Han-Seung Shin, Gitishree Das","doi":"10.1080/21691401.2025.2540646","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, gold nanoparticles (AuNPs) were bio-fabricated using the water extract of marine brown seaweed Hizikia fusiformis (Hfs), commonly eaten as food in Southeast Asia, Korea, China, and Japan, and in other parts of the world. This process offers massive potential for the manufacture of new-generation nanomaterials utilizing sustainable seaweed components and explores its biological (tyrosinase, antidiabetic, antioxidant) and environmental (photocatalytic degradation of toxic industrial dyes) applications. Different spectroscopic approaches were employed to characterize and confirm the fabrication of Hfs-AuNPs. UV-Vis spectroscopy displayed the Hfs-AuNP's surface plasmon resonance at 534 nm. The XRD result revealed the crystalline nature of the nanoparticle. According to FT-IR analysis, various phytoconstituents like polyphenols and polysaccharides from the Hfs extract contributed to the reduction and stabilization of Hfs-AuNPs. Hfs-AuNPs displayed a spherical form with a zeta potential of -18.6 mV. Notably, Hfs-AuNPs exhibited encouraging tyrosinase inhibition (31.74 % inhibition while kojic acid showed 52.40 % inhibition at 100 µg/ml), antidiabetic effect (56.38 % α-amylase activity while acarbose exhibited 61.19 % activity at 100 µg/ml), and antioxidant properties (82.89 % of DPPH scavenging while 60.04 % scavenging by BHT and 63.73 SOD effect while 61.77 % scavenging by BHT at 100 µg/ml). Besides, Hfs-AuNPs also displayed positive photocatalytic degradation of toxic industrial dyes like methylene blue (29.20 % degradation at 5 h) and methyl orange (21.26 % degradation at 3 h). The above eco-friendly, cost-effective, and sustainable synthesis method can be explored further for large-scale production and future substantial applications in therapeutic and industrial needs.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"381-398"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2540646","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, gold nanoparticles (AuNPs) were bio-fabricated using the water extract of marine brown seaweed Hizikia fusiformis (Hfs), commonly eaten as food in Southeast Asia, Korea, China, and Japan, and in other parts of the world. This process offers massive potential for the manufacture of new-generation nanomaterials utilizing sustainable seaweed components and explores its biological (tyrosinase, antidiabetic, antioxidant) and environmental (photocatalytic degradation of toxic industrial dyes) applications. Different spectroscopic approaches were employed to characterize and confirm the fabrication of Hfs-AuNPs. UV-Vis spectroscopy displayed the Hfs-AuNP's surface plasmon resonance at 534 nm. The XRD result revealed the crystalline nature of the nanoparticle. According to FT-IR analysis, various phytoconstituents like polyphenols and polysaccharides from the Hfs extract contributed to the reduction and stabilization of Hfs-AuNPs. Hfs-AuNPs displayed a spherical form with a zeta potential of -18.6 mV. Notably, Hfs-AuNPs exhibited encouraging tyrosinase inhibition (31.74 % inhibition while kojic acid showed 52.40 % inhibition at 100 µg/ml), antidiabetic effect (56.38 % α-amylase activity while acarbose exhibited 61.19 % activity at 100 µg/ml), and antioxidant properties (82.89 % of DPPH scavenging while 60.04 % scavenging by BHT and 63.73 SOD effect while 61.77 % scavenging by BHT at 100 µg/ml). Besides, Hfs-AuNPs also displayed positive photocatalytic degradation of toxic industrial dyes like methylene blue (29.20 % degradation at 5 h) and methyl orange (21.26 % degradation at 3 h). The above eco-friendly, cost-effective, and sustainable synthesis method can be explored further for large-scale production and future substantial applications in therapeutic and industrial needs.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.