Modeling dynamic impact, shock waves, and injury in liver tissue with a constrained mixture theory

IF 2.7 3区 医学 Q2 BIOPHYSICS
J. D. Clayton
{"title":"Modeling dynamic impact, shock waves, and injury in liver tissue with a constrained mixture theory","authors":"J. D. Clayton","doi":"10.1007/s10237-025-01990-3","DOIUrl":null,"url":null,"abstract":"<div><p>A nonlinear continuum theory is advanced for high-rate mechanics and thermodynamics of liver parenchyma. The homogenized continuum is idealized as a solid–fluid mixture of dense viscoelastic tissue and liquid blood. The solid consists of a matrix material comprising the liver lobules and a collagenous fiber network. Under high loading rates pertinent to impact and blast, the velocity difference between solid and fluid is assumed negligible, leading to a constrained mixture theory. The model captures nonlinear isotropic elasticity, viscoelasticity, temperature changes from thermoelasticity and dissipation, and tissue damage, the latter via a scale-free phase-field representation. Effects of blood volume and initial constituent pressures are included. The model is implemented in 3-D finite element software. Analytical and numerical solutions for planar shock loading are compared with observations of liver trauma from shock-tube experiments. Finite-element simulations of dynamic impact are compared with cylinder drop-weight experiments. Model results, including matrix damage exceeding fiber damage at high rates and reduced mechanical stiffness with higher perfused blood volume, agree with experimental trends. Viscoelasticity is important at modest impact speeds.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 5","pages":"1735 - 1766"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-025-01990-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A nonlinear continuum theory is advanced for high-rate mechanics and thermodynamics of liver parenchyma. The homogenized continuum is idealized as a solid–fluid mixture of dense viscoelastic tissue and liquid blood. The solid consists of a matrix material comprising the liver lobules and a collagenous fiber network. Under high loading rates pertinent to impact and blast, the velocity difference between solid and fluid is assumed negligible, leading to a constrained mixture theory. The model captures nonlinear isotropic elasticity, viscoelasticity, temperature changes from thermoelasticity and dissipation, and tissue damage, the latter via a scale-free phase-field representation. Effects of blood volume and initial constituent pressures are included. The model is implemented in 3-D finite element software. Analytical and numerical solutions for planar shock loading are compared with observations of liver trauma from shock-tube experiments. Finite-element simulations of dynamic impact are compared with cylinder drop-weight experiments. Model results, including matrix damage exceeding fiber damage at high rates and reduced mechanical stiffness with higher perfused blood volume, agree with experimental trends. Viscoelasticity is important at modest impact speeds.

用约束混合理论模拟肝组织的动态冲击、冲击波和损伤。
提出了肝实质高速力学和热力学的非线性连续介质理论。均质连续体被理想化为致密粘弹性组织和液态血液的固体-流体混合物。该固体由包含肝小叶和胶原纤维网络的基质材料组成。在与冲击和爆炸有关的高加载率下,假定固体和流体之间的速度差可以忽略不计,从而导致约束混合理论。该模型捕获了非线性各向同性弹性、粘弹性、热弹性和耗散引起的温度变化以及组织损伤,后者通过无标度相场表示。包括血容量和初始组织压力的影响。该模型在三维有限元软件中实现。将平面冲击载荷的解析解和数值解与激波管实验中肝损伤的观察结果进行了比较。将动态冲击有限元模拟与圆柱落锤试验进行了比较。模型结果与实验趋势一致,包括基质损伤以高速率超过纤维损伤,高灌注血容量降低机械刚度。在适度的冲击速度下,粘弹性是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信