Characterization of Aquaporin Z proteoliposome structure and functionality via microscopy and scattering methods.

IF 2.4 4区 生物学 Q3 BIOPHYSICS
Zsófia Edit Szathmáry, Martin Cramer Pedersen, Alec Michels, Torsten Høybye Bak Regueira, Jacob Judas Kain Kirkensgaard
{"title":"Characterization of Aquaporin Z proteoliposome structure and functionality via microscopy and scattering methods.","authors":"Zsófia Edit Szathmáry, Martin Cramer Pedersen, Alec Michels, Torsten Høybye Bak Regueira, Jacob Judas Kain Kirkensgaard","doi":"10.1007/s00249-025-01790-8","DOIUrl":null,"url":null,"abstract":"<p><p>Aquaporins are known for their efficient water transport capabilities and have been widely studied in the past decades. However, creating a biomimetic system mirroring natural water filtration processes still poses a challenge related to performance and stability. To study the protein reconstitution and functionality, this work presents an analytical toolkit using the model system of AqpZ reconstituted phosphatidylcholine proteoliposomes. Combining findings from dynamic light scattering, cryogenic transmission electron microscopy, laser scanning confocal microscopy, stimulated emission depletion microscopy, stopped flow-light scattering and small-angle X-ray scattering provides an assessment of structural and functional characteristics of AqpZ embedding in the bilayer of liposomes. Findings of this work reveal that the incorporation of AqpZ into liposomes promotes an increase within the hydrophobic bilayer thickness as well as within the overall size of the vesicles. AqpZ, AqpZ-GFP and AqpZ-Atto594 are studied and show distinct permeability profiles. Despite all three displaying a successful structural reconstitution into the liposomes, labeled protein variants demonstrate a loss of function. A series of protein concentrations are utilized to extract quantitative information regarding the reconstitution process, revealing constant water transport per AqpZ and thus a consistent trend of increased reconstitution and permeability as a function of AqpZ concentration, as determined by stopped flow-light scattering and detailed further via global fitting of small-angle X-ray scattering data.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01790-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aquaporins are known for their efficient water transport capabilities and have been widely studied in the past decades. However, creating a biomimetic system mirroring natural water filtration processes still poses a challenge related to performance and stability. To study the protein reconstitution and functionality, this work presents an analytical toolkit using the model system of AqpZ reconstituted phosphatidylcholine proteoliposomes. Combining findings from dynamic light scattering, cryogenic transmission electron microscopy, laser scanning confocal microscopy, stimulated emission depletion microscopy, stopped flow-light scattering and small-angle X-ray scattering provides an assessment of structural and functional characteristics of AqpZ embedding in the bilayer of liposomes. Findings of this work reveal that the incorporation of AqpZ into liposomes promotes an increase within the hydrophobic bilayer thickness as well as within the overall size of the vesicles. AqpZ, AqpZ-GFP and AqpZ-Atto594 are studied and show distinct permeability profiles. Despite all three displaying a successful structural reconstitution into the liposomes, labeled protein variants demonstrate a loss of function. A series of protein concentrations are utilized to extract quantitative information regarding the reconstitution process, revealing constant water transport per AqpZ and thus a consistent trend of increased reconstitution and permeability as a function of AqpZ concentration, as determined by stopped flow-light scattering and detailed further via global fitting of small-angle X-ray scattering data.

通过显微镜和散射方法表征水通道蛋白Z蛋白脂质体的结构和功能。
水通道蛋白以其高效的水运输能力而闻名,在过去的几十年中得到了广泛的研究。然而,创建一个模仿自然水过滤过程的仿生系统仍然面临着性能和稳定性方面的挑战。为了研究蛋白质的重组和功能,本工作提出了一个使用AqpZ重组磷脂酰胆碱蛋白脂质体模型系统的分析工具包。结合动态光散射、低温透射电子显微镜、激光扫描共聚焦显微镜、受激发射耗尽显微镜、停止流光散射和小角度x射线散射的结果,评估了AqpZ在脂质体双层中包埋的结构和功能特征。这项工作的发现表明,将AqpZ掺入脂质体可以促进疏水双分子层厚度的增加以及囊泡的总体尺寸的增加。AqpZ、AqpZ- gfp和AqpZ- atto594表现出不同的渗透率特征。尽管这三种蛋白都成功地在脂质体中进行了结构重构,但标记的蛋白变体显示出功能的丧失。利用一系列蛋白质浓度提取有关重构过程的定量信息,揭示了每个AqpZ恒定的水分输送,从而揭示了作为AqpZ浓度函数的重构和渗透率增加的一致趋势,这是通过停止流光散射确定的,并通过小角度x射线散射数据的全局拟合进一步详细说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信