Dual role of carbon monoxide in medium-chain fatty acids production from food waste.

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Bioresource Technology Pub Date : 2025-12-01 Epub Date: 2025-08-05 DOI:10.1016/j.biortech.2025.133084
Samuel Gyebi Arhin, Alessandra Cesaro, Francesco Di Capua, Ville Santala, Johanna M Rinta-Kanto, Marika Kokko, Giovanni Esposito
{"title":"Dual role of carbon monoxide in medium-chain fatty acids production from food waste.","authors":"Samuel Gyebi Arhin, Alessandra Cesaro, Francesco Di Capua, Ville Santala, Johanna M Rinta-Kanto, Marika Kokko, Giovanni Esposito","doi":"10.1016/j.biortech.2025.133084","DOIUrl":null,"url":null,"abstract":"<p><p>Upcycling biowaste into useful biochemicals, including medium-chain fatty acids (MCFAs) represents a crucial node in the transition toward a circular economy. However, the output and stability of anaerobic microbiomes for MCFAs production are strongly anchored on the effective inhibition of competing pathways, including methanogenesis, while stimulating the growth of bacteria producing MCFAs. Here, we proposed a mixotrophic chain elongation (CE) concept for producing MCFAs from food waste by exploring carbon monoxide (CO) as a methanogenic inhibitor. Our findings suggest that CO supplementation at an optimum partial pressure (P<sub>CO</sub>) of 0.25 atm enhances carbon flux toward MCFAs production instead of methanogenesis, resulting in the highest MCFAs concentration observed in this study (10.4 ± 0.4 g-COD/L), with n-caproate as the predominant MCFA. Experiments with CO as the sole substrate demonstrated that the supplied CO could be converted into intermediates such as acetate and ethanol that potentially augmented MCFAs synthesis. Homoacetogens and chain elongators, notably Megasphaera spp. and members of the Lachnospiraceae family were enriched in the P<sub>CO</sub> of 0.25 atm system, forming a putative metabolic network to promote CE. These findings provide insights into valuable MCFAs biosynthesis from biowaste.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133084"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133084","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Upcycling biowaste into useful biochemicals, including medium-chain fatty acids (MCFAs) represents a crucial node in the transition toward a circular economy. However, the output and stability of anaerobic microbiomes for MCFAs production are strongly anchored on the effective inhibition of competing pathways, including methanogenesis, while stimulating the growth of bacteria producing MCFAs. Here, we proposed a mixotrophic chain elongation (CE) concept for producing MCFAs from food waste by exploring carbon monoxide (CO) as a methanogenic inhibitor. Our findings suggest that CO supplementation at an optimum partial pressure (PCO) of 0.25 atm enhances carbon flux toward MCFAs production instead of methanogenesis, resulting in the highest MCFAs concentration observed in this study (10.4 ± 0.4 g-COD/L), with n-caproate as the predominant MCFA. Experiments with CO as the sole substrate demonstrated that the supplied CO could be converted into intermediates such as acetate and ethanol that potentially augmented MCFAs synthesis. Homoacetogens and chain elongators, notably Megasphaera spp. and members of the Lachnospiraceae family were enriched in the PCO of 0.25 atm system, forming a putative metabolic network to promote CE. These findings provide insights into valuable MCFAs biosynthesis from biowaste.

一氧化碳在食物垃圾中产生中链脂肪酸中的双重作用。
将生物垃圾升级为有用的生化物质,包括中链脂肪酸(MCFAs),是向循环经济过渡的关键节点。然而,厌氧微生物组的产量和稳定性在很大程度上依赖于有效抑制竞争途径,包括甲烷生成,同时刺激产生mcfa的细菌的生长。在这里,我们提出了一种混合营养链延伸(CE)概念,通过探索一氧化碳(CO)作为甲烷生成抑制剂,从食物垃圾中生产MCFAs。我们的研究结果表明,在0.25 atm的最佳分压(PCO)下,CO的补充增加了MCFA生成的碳通量,而不是甲烷生成,导致本研究中观察到的最高MCFA浓度(10.4 ± 0.4 g-COD/L),其中n-己酸盐是主要的MCFA。以CO作为唯一底物的实验表明,提供的CO可以转化为醋酸酯和乙醇等中间体,这可能会增加MCFAs的合成。在0.25 atm系统的PCO中,以Megasphaera spp.和Lachnospiraceae家族成员为代表的同质增氧剂和链延长剂富集,形成了一个可能促进CE的代谢网络。这些发现为从生物废物中合成有价值的MCFAs提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信