Samuel Gyebi Arhin, Alessandra Cesaro, Francesco Di Capua, Ville Santala, Johanna M Rinta-Kanto, Marika Kokko, Giovanni Esposito
{"title":"Dual role of carbon monoxide in medium-chain fatty acids production from food waste.","authors":"Samuel Gyebi Arhin, Alessandra Cesaro, Francesco Di Capua, Ville Santala, Johanna M Rinta-Kanto, Marika Kokko, Giovanni Esposito","doi":"10.1016/j.biortech.2025.133084","DOIUrl":null,"url":null,"abstract":"<p><p>Upcycling biowaste into useful biochemicals, including medium-chain fatty acids (MCFAs) represents a crucial node in the transition toward a circular economy. However, the output and stability of anaerobic microbiomes for MCFAs production are strongly anchored on the effective inhibition of competing pathways, including methanogenesis, while stimulating the growth of bacteria producing MCFAs. Here, we proposed a mixotrophic chain elongation (CE) concept for producing MCFAs from food waste by exploring carbon monoxide (CO) as a methanogenic inhibitor. Our findings suggest that CO supplementation at an optimum partial pressure (P<sub>CO</sub>) of 0.25 atm enhances carbon flux toward MCFAs production instead of methanogenesis, resulting in the highest MCFAs concentration observed in this study (10.4 ± 0.4 g-COD/L), with n-caproate as the predominant MCFA. Experiments with CO as the sole substrate demonstrated that the supplied CO could be converted into intermediates such as acetate and ethanol that potentially augmented MCFAs synthesis. Homoacetogens and chain elongators, notably Megasphaera spp. and members of the Lachnospiraceae family were enriched in the P<sub>CO</sub> of 0.25 atm system, forming a putative metabolic network to promote CE. These findings provide insights into valuable MCFAs biosynthesis from biowaste.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133084"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133084","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Upcycling biowaste into useful biochemicals, including medium-chain fatty acids (MCFAs) represents a crucial node in the transition toward a circular economy. However, the output and stability of anaerobic microbiomes for MCFAs production are strongly anchored on the effective inhibition of competing pathways, including methanogenesis, while stimulating the growth of bacteria producing MCFAs. Here, we proposed a mixotrophic chain elongation (CE) concept for producing MCFAs from food waste by exploring carbon monoxide (CO) as a methanogenic inhibitor. Our findings suggest that CO supplementation at an optimum partial pressure (PCO) of 0.25 atm enhances carbon flux toward MCFAs production instead of methanogenesis, resulting in the highest MCFAs concentration observed in this study (10.4 ± 0.4 g-COD/L), with n-caproate as the predominant MCFA. Experiments with CO as the sole substrate demonstrated that the supplied CO could be converted into intermediates such as acetate and ethanol that potentially augmented MCFAs synthesis. Homoacetogens and chain elongators, notably Megasphaera spp. and members of the Lachnospiraceae family were enriched in the PCO of 0.25 atm system, forming a putative metabolic network to promote CE. These findings provide insights into valuable MCFAs biosynthesis from biowaste.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.