ST-GPINN: a spatio-temporal graph physics-informed neural network for enhanced water quality prediction in water distribution systems

IF 11.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Tianwei Mu, Feiyu Duan, Baokuan Ning, Bo Zhou, Junyu Liu, Manhong Huang
{"title":"ST-GPINN: a spatio-temporal graph physics-informed neural network for enhanced water quality prediction in water distribution systems","authors":"Tianwei Mu, Feiyu Duan, Baokuan Ning, Bo Zhou, Junyu Liu, Manhong Huang","doi":"10.1038/s41545-025-00499-7","DOIUrl":null,"url":null,"abstract":"<p>Data-driven models often neglect the underlying physical principles, limiting generalization capabilities in water distribution systems (WDSs). This study presents a novel spatio-temporal graph physics-informed neural network (ST-GPINN) for water quality prediction in WDSs, integrating hydraulic simulations, physics-informed neural networks (PINNs), and graph neural networks (GNNs) to capture dynamics and graph-based network connectivity while approximating partial differential equations (PDEs). ST-GPINN discretizes WDSs using virtual nodes to enhance spatial granularity, employs an Encoder-Processor-Decoder architecture for predictions. Validated on Network A (a small-scale network with 9 junctions and 11 pipes) and Network B (a real large-scale WDS with 920 junctions and 1032 pipes), ST-GPINN outperforms others, achieving a MAE of 0.0073 mg/L, RMSE of 0.0121 mg/L, and <i>R</i><sup>2</sup> of 88.91% in Network A, and a MAE of 0.008 mg/L, RMSE of 0.0098 mg/L, and <i>R</i>² of 98.91% in Network B. Its scalability and accuracy highlight ST-GPINN’s potential for water quality predictions.</p><figure></figure>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"14 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00499-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven models often neglect the underlying physical principles, limiting generalization capabilities in water distribution systems (WDSs). This study presents a novel spatio-temporal graph physics-informed neural network (ST-GPINN) for water quality prediction in WDSs, integrating hydraulic simulations, physics-informed neural networks (PINNs), and graph neural networks (GNNs) to capture dynamics and graph-based network connectivity while approximating partial differential equations (PDEs). ST-GPINN discretizes WDSs using virtual nodes to enhance spatial granularity, employs an Encoder-Processor-Decoder architecture for predictions. Validated on Network A (a small-scale network with 9 junctions and 11 pipes) and Network B (a real large-scale WDS with 920 junctions and 1032 pipes), ST-GPINN outperforms others, achieving a MAE of 0.0073 mg/L, RMSE of 0.0121 mg/L, and R2 of 88.91% in Network A, and a MAE of 0.008 mg/L, RMSE of 0.0098 mg/L, and R² of 98.91% in Network B. Its scalability and accuracy highlight ST-GPINN’s potential for water quality predictions.

Abstract Image

ST-GPINN:一个时空图物理信息神经网络,用于增强配水系统的水质预测
数据驱动的模型往往忽略了潜在的物理原理,限制了水分配系统(WDSs)的泛化能力。本研究提出了一种新的时空图形物理信息神经网络(ST-GPINN),用于WDSs的水质预测,整合水力模拟、物理信息神经网络(pinn)和图形神经网络(gnn),在近似偏微分方程(PDEs)的同时捕捉动态和基于图形的网络连通性。ST-GPINN使用虚拟节点离散wds来增强空间粒度,采用编码器-处理器-解码器架构进行预测。在网络A(包含9个节点和11个管道的小规模网络)和网络B(包含920个节点和1032个管道的真实大规模水系统)上进行验证,ST-GPINN优于其他网络,网络A的MAE为0.0073 mg/L, RMSE为0.0121 mg/L, R2为88.91%,网络B的MAE为0.008 mg/L, RMSE为0.0098 mg/L, R²为98.91%,其可扩展性和准确性突出了ST-GPINN在水质预测方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信