Book Review:; Dissipative Lattice Dynamical Systems

IF 6.1 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2025-08-07 DOI:10.1137/24m1675606
Ábel Garab
{"title":"Book Review:; Dissipative Lattice Dynamical Systems","authors":"Ábel Garab","doi":"10.1137/24m1675606","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 67, Issue 3, Page 655-656, August 2025. <br/> Lattice dynamical systems (LDS) are infinite-dimensional systems of ordinary differential equations (ODEs). They can be formulated as ODEs on a Banach space of bi-infinite sequences. They may arise in various ways: some are obtained as discretizations of partial differential equations or integral equations, and others are infinite-dimensional counterparts of finite-dimensional ODE models such as the Hopfield neural network model. This book studies various kinds of LDS that might be of autonomous, nonautonomous, or random nature. It focuses on first showing that the underlying LDS induces an autonomous, nonautonomous, or random semidynamical system, then providing sufficient criteria for the existence of a global, pullback, or random attractor.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"69 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1675606","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Review, Volume 67, Issue 3, Page 655-656, August 2025.
Lattice dynamical systems (LDS) are infinite-dimensional systems of ordinary differential equations (ODEs). They can be formulated as ODEs on a Banach space of bi-infinite sequences. They may arise in various ways: some are obtained as discretizations of partial differential equations or integral equations, and others are infinite-dimensional counterparts of finite-dimensional ODE models such as the Hopfield neural network model. This book studies various kinds of LDS that might be of autonomous, nonautonomous, or random nature. It focuses on first showing that the underlying LDS induces an autonomous, nonautonomous, or random semidynamical system, then providing sufficient criteria for the existence of a global, pullback, or random attractor.
书评:;耗散晶格动力系统
SIAM评论,第67卷,第3期,655-656页,2025年8月。点阵动力系统(LDS)是常微分方程(ode)的无限维系统。它们可以表示为双无穷序列的Banach空间上的ode。它们可能以各种方式出现:一些是通过偏微分方程或积分方程的离散化获得的,另一些是有限维ODE模型(如Hopfield神经网络模型)的无限维对应。这本书研究了各种各样的LDS,可能是自主的,非自主的,或随机的性质。它首先着重于证明底层LDS诱导了一个自治的、非自治的或随机的半动力系统,然后为全局吸引子、回拉吸引子或随机吸引子的存在提供了充分的准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信