Primordial rotating disk composed of at least 15 dense star-forming clumps at cosmic dawn

IF 14.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
S. Fujimoto, M. Ouchi, K. Kohno, F. Valentino, C. Giménez-Arteaga, G. B. Brammer, L. J. Furtak, M. Kohandel, M. Oguri, A. Pallottini, J. Richard, A. Zitrin, F. E. Bauer, M. Boylan-Kolchin, M. Dessauges-Zavadsky, E. Egami, S. L. Finkelstein, Z. Ma, I. Smail, D. Watson, T. A. Hutchison, J. R. Rigby, B. D. Welch, Y. Ao, L. D. Bradley, G. B. Caminha, K. I. Caputi, D. Espada, R. Endsley, Y. Fudamoto, J. González-López, B. Hatsukade, A. M. Koekemoer, V. Kokorev, N. Laporte, M. Lee, G. E. Magdis, Y. Ono, F. Rizzo, T. Shibuya, K. Shimasaku, F. Sun, S. Toft, H. Umehata, T. Wang, H. Yajima
{"title":"Primordial rotating disk composed of at least 15 dense star-forming clumps at cosmic dawn","authors":"S. Fujimoto, M. Ouchi, K. Kohno, F. Valentino, C. Giménez-Arteaga, G. B. Brammer, L. J. Furtak, M. Kohandel, M. Oguri, A. Pallottini, J. Richard, A. Zitrin, F. E. Bauer, M. Boylan-Kolchin, M. Dessauges-Zavadsky, E. Egami, S. L. Finkelstein, Z. Ma, I. Smail, D. Watson, T. A. Hutchison, J. R. Rigby, B. D. Welch, Y. Ao, L. D. Bradley, G. B. Caminha, K. I. Caputi, D. Espada, R. Endsley, Y. Fudamoto, J. González-López, B. Hatsukade, A. M. Koekemoer, V. Kokorev, N. Laporte, M. Lee, G. E. Magdis, Y. Ono, F. Rizzo, T. Shibuya, K. Shimasaku, F. Sun, S. Toft, H. Umehata, T. Wang, H. Yajima","doi":"10.1038/s41550-025-02592-w","DOIUrl":null,"url":null,"abstract":"<p>Early galaxies form through dark matter and gas assembly, evolving into dynamically hot, chaotic structures driven by mergers and feedback. By contrast, remarkably smooth, rotating disks are observed in massive galaxies only 1.4 billion years after the Big Bang, implying rapid dynamical evolution. Probing this evolution mechanism necessitates studies of young galaxies, yet efforts have been hindered by observational limitations in both sensitivity and spatial resolution. Here we report high-resolution observations of a strongly lensed, quintuply imaged, low-luminosity young galaxy at redshift <i>z</i> = 6.072, just 930 million years after the Big Bang. Magnified by gravitational lensing, the galaxy resolves into at least 15 star-forming clumps (effective radii ~10–60 pc), dominating ~70% of the galaxy’s ultraviolet flux. Cool gas emission reveals an underlying rotating disk (rotational-to-random motion ratio 3.58 ± 0.74) in a gravitationally unstable state (Toomre <i>Q</i> ≈ 0.2–0.3) with high surface gas densities comparable to local starbursts (~10<sup>3−5</sup> <i>M</i><sub><span>⊙</span></sub> pc<sup>−2</sup>). These properties suggest that disk instabilities with weak feedback drive prolific clump formation. The extreme clumpiness surpasses galaxies at later epochs and current simulation predictions. Our findings directly connect small-scale internal structures, underlying disk dynamics along with feedback effects at cosmic dawn, potentially explaining the abundance of luminous galaxies observed in the early Universe.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"2 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02592-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Early galaxies form through dark matter and gas assembly, evolving into dynamically hot, chaotic structures driven by mergers and feedback. By contrast, remarkably smooth, rotating disks are observed in massive galaxies only 1.4 billion years after the Big Bang, implying rapid dynamical evolution. Probing this evolution mechanism necessitates studies of young galaxies, yet efforts have been hindered by observational limitations in both sensitivity and spatial resolution. Here we report high-resolution observations of a strongly lensed, quintuply imaged, low-luminosity young galaxy at redshift z = 6.072, just 930 million years after the Big Bang. Magnified by gravitational lensing, the galaxy resolves into at least 15 star-forming clumps (effective radii ~10–60 pc), dominating ~70% of the galaxy’s ultraviolet flux. Cool gas emission reveals an underlying rotating disk (rotational-to-random motion ratio 3.58 ± 0.74) in a gravitationally unstable state (Toomre Q ≈ 0.2–0.3) with high surface gas densities comparable to local starbursts (~103−5M pc−2). These properties suggest that disk instabilities with weak feedback drive prolific clump formation. The extreme clumpiness surpasses galaxies at later epochs and current simulation predictions. Our findings directly connect small-scale internal structures, underlying disk dynamics along with feedback effects at cosmic dawn, potentially explaining the abundance of luminous galaxies observed in the early Universe.

Abstract Image

宇宙黎明时由至少15个致密的恒星形成团块组成的原始旋转盘
早期的星系是通过暗物质和气体聚集形成的,在合并和反馈的驱动下演变成动态热的、混乱的结构。相比之下,在大爆炸后仅14亿年的大质量星系中就观察到非常光滑的旋转盘,这意味着快速的动态演化。探索这种演化机制需要对年轻星系进行研究,但由于观测灵敏度和空间分辨率的限制,研究工作一直受到阻碍。在这里,我们报告了对一个强透镜、五倍成像、低光度年轻星系的高分辨率观测,该星系位于红移z = 6072,仅在大爆炸后9.3亿年。通过引力透镜的放大,星系分解成至少15个恒星形成团块(有效半径~10 - 60pc),占星系紫外线通量的70%。冷气体发射揭示了一个处于引力不稳定状态(Toomre Q≈0.2-0.3)下的旋转盘(旋转与随机运动比3.58±0.74),其表面气体密度可与本地星暴(~103−5 M⊙pc−2)相比较。这些性质表明,弱反馈的磁盘不稳定性驱动了大量团块的形成。在后来的时代和目前的模拟预测中,这种极端的团块性超过了星系。我们的发现直接将小规模的内部结构、潜在的磁盘动力学以及宇宙黎明时的反馈效应联系起来,这可能解释了在早期宇宙中观测到的大量发光星系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信