SuperSalt: equivariant neural network force fields for multicomponent molten salts system

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chen Shen, Siamak Attarian, Yixuan Zhang, Hongbin Zhang, Mark Asta, Izabela Szlufarska, Dane Morgan
{"title":"SuperSalt: equivariant neural network force fields for multicomponent molten salts system","authors":"Chen Shen, Siamak Attarian, Yixuan Zhang, Hongbin Zhang, Mark Asta, Izabela Szlufarska, Dane Morgan","doi":"10.1038/s41467-025-62450-1","DOIUrl":null,"url":null,"abstract":"<p>Molten salts are crucial for clean energy applications, yet exploring their thermophysical properties across diverse chemical space remains challenging. We present the development of a machine learning interatomic potential (MLIP) called SuperSalt, which targets 11-cation chloride melts and captures the essential physics of molten salts with near-DFT accuracy. Using an efficient workflow that integrates systems of one, two, and 11 components, the SuperSalt potential can accurately predict thermophysical properties such as density, bulk modulus, thermal expansion, and heat capacity. Our model is validated across a broad chemical space, demonstrating excellent transferability. We further illustrate how Bayesian optimization combined with SuperSalt can accelerate the discovery of optimal salt compositions with desired properties. This work provides a foundation for future studies that allows easy extensions to more complex systems, such as those containing additional elements.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62450-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Molten salts are crucial for clean energy applications, yet exploring their thermophysical properties across diverse chemical space remains challenging. We present the development of a machine learning interatomic potential (MLIP) called SuperSalt, which targets 11-cation chloride melts and captures the essential physics of molten salts with near-DFT accuracy. Using an efficient workflow that integrates systems of one, two, and 11 components, the SuperSalt potential can accurately predict thermophysical properties such as density, bulk modulus, thermal expansion, and heat capacity. Our model is validated across a broad chemical space, demonstrating excellent transferability. We further illustrate how Bayesian optimization combined with SuperSalt can accelerate the discovery of optimal salt compositions with desired properties. This work provides a foundation for future studies that allows easy extensions to more complex systems, such as those containing additional elements.

Abstract Image

超盐:多组分熔盐系统的等变神经网络力场
熔盐对于清洁能源的应用至关重要,但在不同的化学空间中探索其热物理性质仍然具有挑战性。我们提出了一种名为SuperSalt的机器学习原子间电位(MLIP)的开发,它以11-阳离子氯化物熔体为目标,并以接近dft的精度捕获熔盐的基本物理特性。SuperSalt电势通过集成1、2和11个组件的高效工作流程,可以准确预测热物理性质,如密度、体积模量、热膨胀和热容。我们的模型在广泛的化学领域得到了验证,证明了出色的可移植性。我们进一步说明了贝叶斯优化与SuperSalt相结合如何加速发现具有所需性能的最佳盐组成。这项工作为未来的研究提供了一个基础,可以轻松扩展到更复杂的系统,例如那些包含额外元素的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信