Yusheng Liu , Jiadiao Zhou , Yueji Wang , Daniel Nguyen , Dhyanesh Baskaran , Yuan Liu , Hua Wang
{"title":"RENBP inhibition amplifies metabolic glycan labeling efficiency of antigen-presenting cells in vitro and in vivo","authors":"Yusheng Liu , Jiadiao Zhou , Yueji Wang , Daniel Nguyen , Dhyanesh Baskaran , Yuan Liu , Hua Wang","doi":"10.1016/j.chembiol.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic glycoengineering of unnatural sugars provides a powerful tool to introduce unique chemical tags onto cell membrane for subsequent conjugation of cargos. However, the metabolic glycan labeling efficiency of antigen-presenting cells (APCs), the key mediators of adaptive immunity, is often low. Here, we report that APCs upregulate GlcNAc 2-epimerase (RENBP) and that RENBP inhibition leads to improved labeling efficiency of tetraacetyl-<em>N</em>-azidoacetylmannosamine (AAM) in APCs, including dendritic cells (1.2-fold), macrophages (1.3-fold), and B cells (1.4-fold) <em>in vitro</em>. RENBP inhibition can preferentially enhance AAM labeling efficiency in APCs than in non-APCs and selectively enhance the labeling efficiency of AAM over azido-galactosamine. We further demonstrate that RENBP inhibitors can improve AAM-mediated labeling of B cells and other APCs <em>in vivo</em>, with the largest enhancement for B cells (>3-fold) for 7 days. Our study uncovers a facile approach to improving metabolic glycan labeling of APCs, enabling the development of APC-targeted immunotherapies.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 8","pages":"Pages 983-993.e5"},"PeriodicalIF":7.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625002247","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic glycoengineering of unnatural sugars provides a powerful tool to introduce unique chemical tags onto cell membrane for subsequent conjugation of cargos. However, the metabolic glycan labeling efficiency of antigen-presenting cells (APCs), the key mediators of adaptive immunity, is often low. Here, we report that APCs upregulate GlcNAc 2-epimerase (RENBP) and that RENBP inhibition leads to improved labeling efficiency of tetraacetyl-N-azidoacetylmannosamine (AAM) in APCs, including dendritic cells (1.2-fold), macrophages (1.3-fold), and B cells (1.4-fold) in vitro. RENBP inhibition can preferentially enhance AAM labeling efficiency in APCs than in non-APCs and selectively enhance the labeling efficiency of AAM over azido-galactosamine. We further demonstrate that RENBP inhibitors can improve AAM-mediated labeling of B cells and other APCs in vivo, with the largest enhancement for B cells (>3-fold) for 7 days. Our study uncovers a facile approach to improving metabolic glycan labeling of APCs, enabling the development of APC-targeted immunotherapies.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.