Aravind Devarakonda, Christie S. Koay, Daniel G. Chica, Morgan Thinel, Asish K. Kundu, Zhi Lin, Alexandru B. Georgescu, Sebastian Rossi, Sae Young Han, Michael E. Ziebel, Madisen A. Holbrook, Anil Rajapitamahuni, Elio Vescovo, Kenji Watanabe, Takashi Taniguchi, Milan Delor, Xiaoyang Zhu, Abhay N. Pasupathy, Raquel Queiroz, Cory R. Dean, Xavier Roy
{"title":"Frustrated electron hopping from the orbital configuration in a two-dimensional lattice","authors":"Aravind Devarakonda, Christie S. Koay, Daniel G. Chica, Morgan Thinel, Asish K. Kundu, Zhi Lin, Alexandru B. Georgescu, Sebastian Rossi, Sae Young Han, Michael E. Ziebel, Madisen A. Holbrook, Anil Rajapitamahuni, Elio Vescovo, Kenji Watanabe, Takashi Taniguchi, Milan Delor, Xiaoyang Zhu, Abhay N. Pasupathy, Raquel Queiroz, Cory R. Dean, Xavier Roy","doi":"10.1038/s41567-025-02953-2","DOIUrl":null,"url":null,"abstract":"Electron hopping on spatially periodic lattices gives rise to intriguing electronic behaviour. For example, hopping on the geometrically frustrated two-dimensional kagome, dice and Lieb lattices yields electronic band structures with both massless Dirac-like and perfectly dispersion-less, flat bands. As materials featuring the dice and Lieb lattice structures are scarce, an alternative approach proposes to leverage atomic orbitals to realize the characteristic electron hopping of geometrically frustrated lattices. This strategy promises to expand the list of candidate materials with frustrated electron hopping, but is yet to be shown in experiments. Here we demonstrate frustrated hopping in the van der Waals intermetallic Pd5AlI2, emerging from the arrangement of atomic orbitals in a primitive square lattice. Using angle-resolved photoemission spectroscopy and quantum oscillation measurements, we reveal that the band structure of Pd5AlI2 includes linear Dirac-like bands intersected at their crossing point by a locally flat band—an essential characteristic of frustrated hopping in Lieb and dice lattices. Moreover, this compound shows exceptional chemical stability, with its unusual bulk band structure and metallicity persisting in ambient conditions down to the monolayer limit. Hence, our results showcase a way to realize electronic structures characteristic of geometrically frustrated lattices in non-frustrated systems. Electron hopping in geometrically frustrated lattices can result in a rich variety of unusual behaviours. Now, the orbital arrangement in a van der Waals metal with a non-frustrated, primitive lattice is found to show similar effects.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 8","pages":"1260-1266"},"PeriodicalIF":18.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-02953-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electron hopping on spatially periodic lattices gives rise to intriguing electronic behaviour. For example, hopping on the geometrically frustrated two-dimensional kagome, dice and Lieb lattices yields electronic band structures with both massless Dirac-like and perfectly dispersion-less, flat bands. As materials featuring the dice and Lieb lattice structures are scarce, an alternative approach proposes to leverage atomic orbitals to realize the characteristic electron hopping of geometrically frustrated lattices. This strategy promises to expand the list of candidate materials with frustrated electron hopping, but is yet to be shown in experiments. Here we demonstrate frustrated hopping in the van der Waals intermetallic Pd5AlI2, emerging from the arrangement of atomic orbitals in a primitive square lattice. Using angle-resolved photoemission spectroscopy and quantum oscillation measurements, we reveal that the band structure of Pd5AlI2 includes linear Dirac-like bands intersected at their crossing point by a locally flat band—an essential characteristic of frustrated hopping in Lieb and dice lattices. Moreover, this compound shows exceptional chemical stability, with its unusual bulk band structure and metallicity persisting in ambient conditions down to the monolayer limit. Hence, our results showcase a way to realize electronic structures characteristic of geometrically frustrated lattices in non-frustrated systems. Electron hopping in geometrically frustrated lattices can result in a rich variety of unusual behaviours. Now, the orbital arrangement in a van der Waals metal with a non-frustrated, primitive lattice is found to show similar effects.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.