Kelly Loria, Heili Lowman, Jasmine Krause, Leon Katona, Ramon Naranjo, Facundo Scordo, Adrian Harpold, Sudeep Chandra, Joanna R. Blaszczak
{"title":"The influence of mountain streamflow on nearshore ecosystem metabolism in a large, oligotrophic lake across a drought and a wet year","authors":"Kelly Loria, Heili Lowman, Jasmine Krause, Leon Katona, Ramon Naranjo, Facundo Scordo, Adrian Harpold, Sudeep Chandra, Joanna R. Blaszczak","doi":"10.1002/lno.70157","DOIUrl":null,"url":null,"abstract":"<p>The influence of streamflow can be highly heterogeneous around lake edges, making it challenging to predict how benthic productivity in the littoral zone responds to hydroclimatic change. The degree to which streamflow affects nearshore productivity varies as a function of catchment characteristics, internal lake morphometry, and processes. This study investigates the relative influence of streamflow on nearshore metabolism (e.g., gross primary productivity [GPP], ecosystem respiration [ER], and net ecosystem productivity [NEP]) for shores with large, small, or no stream inflows (four locations across two shores) during two contrasting water years (one drought and one wet) in Lake Tahoe (Nevada/California, USA). Using Bayesian structural equation modeling, we found streamflow decreased water temperature, benthic light, and GPP across both years. Compared to the drought year, the subsequent wet year had 54% higher annual streamflow, 37% less light, and lower NEP at locations with large or small inflows (39% Δ −0.32 mmol O₂ m<sup>−3</sup> d<sup>−1%</sup> and 49% Δ −1.19 mmol O₂ m<sup>−3</sup> d<sup>−1</sup>, respectively). During the wet year, we observed a 68% increase in the negative association between streamflow and nearshore GPP at the large inflow and a 62% decrease in the positive association between streamflow and GPP at the small inflow. This work demonstrates how oligotrophic littoral productivity varies across shorelines and in response to hydrological conditions, with streamflow and precipitation exerting contrasting effects depending on the proximity to inflowing streams. Our results suggest future lake responses to climate volatility depend on spatial and temporal hydrologic connectivity to catchments and upland processes.</p>","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"70 9","pages":"2645-2659"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lno.70157","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of streamflow can be highly heterogeneous around lake edges, making it challenging to predict how benthic productivity in the littoral zone responds to hydroclimatic change. The degree to which streamflow affects nearshore productivity varies as a function of catchment characteristics, internal lake morphometry, and processes. This study investigates the relative influence of streamflow on nearshore metabolism (e.g., gross primary productivity [GPP], ecosystem respiration [ER], and net ecosystem productivity [NEP]) for shores with large, small, or no stream inflows (four locations across two shores) during two contrasting water years (one drought and one wet) in Lake Tahoe (Nevada/California, USA). Using Bayesian structural equation modeling, we found streamflow decreased water temperature, benthic light, and GPP across both years. Compared to the drought year, the subsequent wet year had 54% higher annual streamflow, 37% less light, and lower NEP at locations with large or small inflows (39% Δ −0.32 mmol O₂ m−3 d−1% and 49% Δ −1.19 mmol O₂ m−3 d−1, respectively). During the wet year, we observed a 68% increase in the negative association between streamflow and nearshore GPP at the large inflow and a 62% decrease in the positive association between streamflow and GPP at the small inflow. This work demonstrates how oligotrophic littoral productivity varies across shorelines and in response to hydrological conditions, with streamflow and precipitation exerting contrasting effects depending on the proximity to inflowing streams. Our results suggest future lake responses to climate volatility depend on spatial and temporal hydrologic connectivity to catchments and upland processes.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.