Valdemar Brimnes Ingemann Johansen, Jonas Petersen, Jens Lund, Cecilie Vad Mathiesen, Henning Fenselau, Christoffer Clemmensen
{"title":"Brain control of energy homeostasis: Implications for anti-obesity pharmacotherapy","authors":"Valdemar Brimnes Ingemann Johansen, Jonas Petersen, Jens Lund, Cecilie Vad Mathiesen, Henning Fenselau, Christoffer Clemmensen","doi":"10.1016/j.cell.2025.06.010","DOIUrl":null,"url":null,"abstract":"Despite the evolution of hardwired homeostatic mechanisms to balance food intake with energy needs, the obesity epidemic continues to escalate globally. However, recent breakthroughs in delineating the molecular signaling pathways by which neural circuits regulate consummatory behaviors, along with transformative advances in peptide-based pharmacotherapy, are fueling the development of a new generation of safe and effective treatments for obesity. Here, we outline our current understanding of how the central nervous system controls energy homeostasis and examine how emerging insights, including those related to neuroplasticity, offer new perspectives for restoring energy balance and achieving durable weight loss. Together, these advances provide promising avenues for treating obesity and managing cardiometabolic disease.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"95 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the evolution of hardwired homeostatic mechanisms to balance food intake with energy needs, the obesity epidemic continues to escalate globally. However, recent breakthroughs in delineating the molecular signaling pathways by which neural circuits regulate consummatory behaviors, along with transformative advances in peptide-based pharmacotherapy, are fueling the development of a new generation of safe and effective treatments for obesity. Here, we outline our current understanding of how the central nervous system controls energy homeostasis and examine how emerging insights, including those related to neuroplasticity, offer new perspectives for restoring energy balance and achieving durable weight loss. Together, these advances provide promising avenues for treating obesity and managing cardiometabolic disease.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.