Data-driven de novo design of super-adhesive hydrogels.

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-08-06 DOI:10.1038/s41586-025-09269-4
Hongguang Liao,Sheng Hu,Hu Yang,Lei Wang,Shinya Tanaka,Ichigaku Takigawa,Wei Li,Hailong Fan,Jian Ping Gong
{"title":"Data-driven de novo design of super-adhesive hydrogels.","authors":"Hongguang Liao,Sheng Hu,Hu Yang,Lei Wang,Shinya Tanaka,Ichigaku Takigawa,Wei Li,Hailong Fan,Jian Ping Gong","doi":"10.1038/s41586-025-09269-4","DOIUrl":null,"url":null,"abstract":"Data-driven methodologies have transformed the discovery and prediction of hard materials with well-defined atomic structures by leveraging standardized datasets, enabling accurate property predictions and facilitating efficient exploration of design spaces1-3. However, their application to soft materials remains challenging because of complex, multiscale structure-property relationships4-6. Here we present a data-driven approach that integrates data mining, experimentation and machine learning to design high-performance adhesive hydrogels from scratch, tailored for demanding underwater environments. By leveraging protein databases, we developed a descriptor strategy to statistically replicate protein sequence patterns in polymer strands by ideal random copolymerization, enabling targeted hydrogel design and dataset construction. Using machine learning, we optimized hydrogel formulations from an initial dataset of 180 bioinspired hydrogels, achieving remarkable improvements in adhesive strength, with a maximum value exceeding 1 MPa. These super-adhesive hydrogels hold immense potential across diverse applications, from biomedical engineering to deep-sea exploration, marking a notable advancement in data-driven innovation for soft materials.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"27 1","pages":"89-95"},"PeriodicalIF":48.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09269-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven methodologies have transformed the discovery and prediction of hard materials with well-defined atomic structures by leveraging standardized datasets, enabling accurate property predictions and facilitating efficient exploration of design spaces1-3. However, their application to soft materials remains challenging because of complex, multiscale structure-property relationships4-6. Here we present a data-driven approach that integrates data mining, experimentation and machine learning to design high-performance adhesive hydrogels from scratch, tailored for demanding underwater environments. By leveraging protein databases, we developed a descriptor strategy to statistically replicate protein sequence patterns in polymer strands by ideal random copolymerization, enabling targeted hydrogel design and dataset construction. Using machine learning, we optimized hydrogel formulations from an initial dataset of 180 bioinspired hydrogels, achieving remarkable improvements in adhesive strength, with a maximum value exceeding 1 MPa. These super-adhesive hydrogels hold immense potential across diverse applications, from biomedical engineering to deep-sea exploration, marking a notable advancement in data-driven innovation for soft materials.
数据驱动的超粘水凝胶从头设计。
数据驱动的方法通过利用标准化的数据集,改变了对具有明确定义的原子结构的硬材料的发现和预测,实现了准确的属性预测,并促进了对设计空间的有效探索1-3。然而,由于复杂的多尺度结构-性能关系,它们在软材料中的应用仍然具有挑战性[4]。在这里,我们提出了一种数据驱动的方法,该方法集成了数据挖掘、实验和机器学习,从零开始设计高性能粘合剂水凝胶,为苛刻的水下环境量身定制。通过利用蛋白质数据库,我们开发了一种描述符策略,通过理想的随机共聚来统计复制聚合物链中的蛋白质序列模式,从而实现有针对性的水凝胶设计和数据集构建。利用机器学习,我们从180个生物启发水凝胶的初始数据集中优化了水凝胶配方,在粘合强度方面取得了显着改善,最大值超过1 MPa。这些超粘水凝胶在从生物医学工程到深海勘探的各种应用中具有巨大的潜力,标志着软材料数据驱动创新的显着进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信