{"title":"Systematic screening for functional exon-skipping isoforms using the CRISPR-RfxCas13d system.","authors":"Qiang Sun, Xuejie Ma, Qianqian Ning, Shuang Li, Ping Wang, Xiangmin Tan, Qian Jin, Junnian Zheng, Yang Li, Dong Dong","doi":"10.1016/j.cels.2025.101351","DOIUrl":null,"url":null,"abstract":"<p><p>Exon skipping (ES) is the most prevalent form of alternative splicing and a hallmark of tumorigenesis, yet its functional roles remain underexplored. Here, we present a CRISPR-RfxCas13d-based platform for transcript-specific silencing of ES-derived isoforms using guide RNAs (gRNAs) targeting exon-exon junctions. We designed a transcriptome-wide gRNA library against 3,744 human ES events and conducted loss-of-function screens in colorectal cancer (CRC) cells in vitro and in vivo. This screen uncovered multiple ES events essential for CRC growth, notably HMGN3 Δ6, an isoform arising from exon 6 skipping, which enhanced tumor proliferation. Functional validation confirmed the oncogenic role of HMGN3 Δ6 and its necessity for CRC progression. Our study establishes CRISPR-RfxCas13d as a powerful tool for isoform-specific functional genomics and reveals a widespread, previously uncharacterized layer of tumor biology driven by ES. These findings position ES-derived transcripts as promising targets for therapeutic intervention in cancer.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101351"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Exon skipping (ES) is the most prevalent form of alternative splicing and a hallmark of tumorigenesis, yet its functional roles remain underexplored. Here, we present a CRISPR-RfxCas13d-based platform for transcript-specific silencing of ES-derived isoforms using guide RNAs (gRNAs) targeting exon-exon junctions. We designed a transcriptome-wide gRNA library against 3,744 human ES events and conducted loss-of-function screens in colorectal cancer (CRC) cells in vitro and in vivo. This screen uncovered multiple ES events essential for CRC growth, notably HMGN3 Δ6, an isoform arising from exon 6 skipping, which enhanced tumor proliferation. Functional validation confirmed the oncogenic role of HMGN3 Δ6 and its necessity for CRC progression. Our study establishes CRISPR-RfxCas13d as a powerful tool for isoform-specific functional genomics and reveals a widespread, previously uncharacterized layer of tumor biology driven by ES. These findings position ES-derived transcripts as promising targets for therapeutic intervention in cancer.