{"title":"Chloroplast acetyltransferase GNAT2 acts as a redox-regulated switch for state transitions in tomato.","authors":"Xiaoyun Wang, Jianghao Wu, Hongxin Li, Ying Liu, Dexian Han, Danhui Dong, Jialong Zhang, Lixin Zhang, Na Zhang, Yang-Dong Guo","doi":"10.1186/s43897-025-00164-0","DOIUrl":null,"url":null,"abstract":"<p><p>State transition is a dynamic process to balance the amount of light energy received by photosystem I (PSI) and photosystem II (PSII) so as to maintain an optimal photosynthetic yield and to minimize photo-damage in a fluctuating light environment. Recent studies show that chloroplast acetyltransferase participates in the acetylation of photosynthetic proteins and state transitions. However, the exact molecular mechanisms are poorly understood. In this study, we characterized a chloroplast acetyltransferase in Solanum lycopersicum, SlGNAT2, and found that mutants lacking this enzyme are deficient in state transitions and retarded in growth under fluctuating light. Acetyltransferase activity assays and fluorescence measurements suggest that <sup>6</sup>Lys of mature SlLhcb2 protein is a target of SlGNAT2 and might be involved in state transitions. In addition, <sup>131</sup>Cys-related redox changes of SlGNAT2 affect its acetylation activity on SlLhcb2 and influence the assembly of the PSI-LHCI-LHCII supercomplex. Therefore, we propose that the chloroplast redox state may regulate the activity of SlGNAT2 which in turn acetylates SlLhcb2 and mediates state transitions in higher plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"39"},"PeriodicalIF":8.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00164-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
State transition is a dynamic process to balance the amount of light energy received by photosystem I (PSI) and photosystem II (PSII) so as to maintain an optimal photosynthetic yield and to minimize photo-damage in a fluctuating light environment. Recent studies show that chloroplast acetyltransferase participates in the acetylation of photosynthetic proteins and state transitions. However, the exact molecular mechanisms are poorly understood. In this study, we characterized a chloroplast acetyltransferase in Solanum lycopersicum, SlGNAT2, and found that mutants lacking this enzyme are deficient in state transitions and retarded in growth under fluctuating light. Acetyltransferase activity assays and fluorescence measurements suggest that 6Lys of mature SlLhcb2 protein is a target of SlGNAT2 and might be involved in state transitions. In addition, 131Cys-related redox changes of SlGNAT2 affect its acetylation activity on SlLhcb2 and influence the assembly of the PSI-LHCI-LHCII supercomplex. Therefore, we propose that the chloroplast redox state may regulate the activity of SlGNAT2 which in turn acetylates SlLhcb2 and mediates state transitions in higher plants.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.