{"title":"Genomic insights and metabolic profiling of gut commensal Luoshenia tenuis at strain level.","authors":"Xin-Wei Sun, Hao-Jie Huang, Yu-Zhi Zhao, Hao-Yu Chen, Chang-Yu Wang, Zheng Zhou, Yu Jiang, Run-Yu Han, He Jiang, Chang Liu, Shuang-Jiang Liu","doi":"10.1038/s41522-025-00793-9","DOIUrl":null,"url":null,"abstract":"<p><p>Luoshenia tenuis, a newly identified gut commensal microbe from the family Christensenellaceae, has shown therapeutic effects on weight control and metabolic disorders in model mice. Bacterial strains are essential for investigations on the host-microbe interaction and further development of medical applications. In this study, we collected 27 strains of L. tenuis from the Christensenellaceae Gut Microbial Biobank (ChrisGMB) and sequenced their complete genomes. Our analysis revealed considerable genetic diversity and genomic plasticity. Metabolic prediction indicated that L. tenuis had a preference for metabolizing plant-derived carbohydrates and the ability to synthesize various amino acids and cofactors. In silico analysis, along with in vitro experiments, validated that L. tenuis strains possessed strong acid tolerance and limited antibiotic resistance, suitable traits for oral probiotic development. Further volatile metabolomics and bile acid transformation profiling revealed that L. tenuis was capable of producing metabolites with previously-identified beneficial effects, along with extensive bile acid modification, potentially contributing to its positive impact on host metabolism. This study provides essential insight into strain-level functional and genomic features, laying a foundation for future research towards the development of L. tenuis-based therapies for metabolic disease.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"153"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00793-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Luoshenia tenuis, a newly identified gut commensal microbe from the family Christensenellaceae, has shown therapeutic effects on weight control and metabolic disorders in model mice. Bacterial strains are essential for investigations on the host-microbe interaction and further development of medical applications. In this study, we collected 27 strains of L. tenuis from the Christensenellaceae Gut Microbial Biobank (ChrisGMB) and sequenced their complete genomes. Our analysis revealed considerable genetic diversity and genomic plasticity. Metabolic prediction indicated that L. tenuis had a preference for metabolizing plant-derived carbohydrates and the ability to synthesize various amino acids and cofactors. In silico analysis, along with in vitro experiments, validated that L. tenuis strains possessed strong acid tolerance and limited antibiotic resistance, suitable traits for oral probiotic development. Further volatile metabolomics and bile acid transformation profiling revealed that L. tenuis was capable of producing metabolites with previously-identified beneficial effects, along with extensive bile acid modification, potentially contributing to its positive impact on host metabolism. This study provides essential insight into strain-level functional and genomic features, laying a foundation for future research towards the development of L. tenuis-based therapies for metabolic disease.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.