Influence of x-ray irradiation on the magnetic and structural properties of gadolinium silicide nanoparticles.

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Samantha E Smith, Santiago Bermudez, Pavan Chaitanya, Zoe Boekelheide, Jessika Rojas Marin, Ravi L Hadimani
{"title":"Influence of x-ray irradiation on the magnetic and structural properties of gadolinium silicide nanoparticles.","authors":"Samantha E Smith, Santiago Bermudez, Pavan Chaitanya, Zoe Boekelheide, Jessika Rojas Marin, Ravi L Hadimani","doi":"10.1088/1361-6528/adf7ae","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic hyperthermia treatment (MHT) utilizes heat generated from magnetic nanoparticles under an alternating magnetic field for therapeutic applications. Gadolinium silicide (Gd<sub>5</sub>Si<sub>4</sub>) has emerged as a promising MHT candidate. However, the impact of high-dose x-ray irradiation on its magnetic behavior remains uncertain. This study examines Gd<sub>5</sub>Si<sub>4</sub>nanoparticles exposed to 36 and 72 kGy x-ray irradiation at a high-dose rate (120 Gy min<sup>-1</sup>). While x-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy confirm no structural or compositional changes, transmission electron microscopy reveals localized lattice distortions, along with observable changes in magnetic properties, as evidenced in magnetization vs. temperature and hysteresis measurements. Despite this, magnetocaloric properties and specific loss power remain unaffected. Our findings confirm the stability of Gd<sub>5</sub>Si<sub>4</sub>under high-dose x-ray irradiation, supporting its potential for radiotherapy and magnetocaloric cooling in deep-space applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adf7ae","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic hyperthermia treatment (MHT) utilizes heat generated from magnetic nanoparticles under an alternating magnetic field for therapeutic applications. Gadolinium silicide (Gd5Si4) has emerged as a promising MHT candidate. However, the impact of high-dose x-ray irradiation on its magnetic behavior remains uncertain. This study examines Gd5Si4nanoparticles exposed to 36 and 72 kGy x-ray irradiation at a high-dose rate (120 Gy min-1). While x-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy confirm no structural or compositional changes, transmission electron microscopy reveals localized lattice distortions, along with observable changes in magnetic properties, as evidenced in magnetization vs. temperature and hysteresis measurements. Despite this, magnetocaloric properties and specific loss power remain unaffected. Our findings confirm the stability of Gd5Si4under high-dose x-ray irradiation, supporting its potential for radiotherapy and magnetocaloric cooling in deep-space applications.

x射线辐照对硅化钆纳米颗粒磁性和结构性能的影响。
磁热疗(MHT)利用磁性纳米颗粒(MNPs)在交变磁场(AMF)下产生的热量进行治疗。硅化钆(Gd5Si4)已成为一种很有前途的MHT候选者。然而,高剂量x射线照射对其磁性行为的影响仍不确定。本研究考察了Gd5Si4纳米颗粒在高剂量率(120 Gy/min)下暴露于36和72 kGy x射线照射下的情况。虽然x射线衍射,扫描电子显微镜和能量色散光谱证实没有结构或成分变化,但透射电子显微镜显示局部晶格扭曲,以及磁性能的可观察变化,如磁化与温度和磁滞测量所证明的那样。尽管如此,磁热学性能和比损耗功率(SLP)不受影响。我们的研究结果证实了Gd5Si4在高剂量x射线照射下的稳定性,支持其在深空应用的放射治疗(RT)和磁热冷却的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信