{"title":"Is amyotrophic lateral sclerosis less severe in mice than in humans?","authors":"Luc Dupuis, Janice Robertson","doi":"10.1097/WCO.0000000000001412","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>We review here novel knock-in models of amyotrophic lateral sclerosis (ALS).</p><p><strong>Recent findings: </strong>Knock-in mouse models of various familial forms of ALS generally display a mild motor phenotype, with limited progression, that do not recapitulate the full-blown clinical picture of ALS.</p><p><strong>Summary: </strong>ALS is a devastating neurodegenerative disease in humans. Typically manifesting in the fifth or sixth decade of life, ALS leads to progressive motor dysfunction and death, usually within 2-5 years from symptom onset. A subset of ALS cases are dominantly inherited. Over the last 30 years, multiple mouse models of ALS have been generated, and recent advances in mouse genome editing techniques have enabled the generation of mouse strains carrying orthologous mutations in endogenous genes that mirror those causing familial forms of ALS. Intriguingly, many of these knock-in mouse models develop much milder phenotypes than patients with ALS carrying the same mutations. A full-blown ALS clinical phenotype seems to be only elicited upon overexpression of mutant genes beyond the endogenous levels. Here, we review these novel models and argue that these models could represent how ALS manifests in the mouse species. We also evaluate how these models could be used for characterizing mechanisms and preclinical drug evaluation.</p>","PeriodicalId":11059,"journal":{"name":"Current Opinion in Neurology","volume":" ","pages":"581-587"},"PeriodicalIF":4.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WCO.0000000000001412","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: We review here novel knock-in models of amyotrophic lateral sclerosis (ALS).
Recent findings: Knock-in mouse models of various familial forms of ALS generally display a mild motor phenotype, with limited progression, that do not recapitulate the full-blown clinical picture of ALS.
Summary: ALS is a devastating neurodegenerative disease in humans. Typically manifesting in the fifth or sixth decade of life, ALS leads to progressive motor dysfunction and death, usually within 2-5 years from symptom onset. A subset of ALS cases are dominantly inherited. Over the last 30 years, multiple mouse models of ALS have been generated, and recent advances in mouse genome editing techniques have enabled the generation of mouse strains carrying orthologous mutations in endogenous genes that mirror those causing familial forms of ALS. Intriguingly, many of these knock-in mouse models develop much milder phenotypes than patients with ALS carrying the same mutations. A full-blown ALS clinical phenotype seems to be only elicited upon overexpression of mutant genes beyond the endogenous levels. Here, we review these novel models and argue that these models could represent how ALS manifests in the mouse species. We also evaluate how these models could be used for characterizing mechanisms and preclinical drug evaluation.
期刊介绍:
Current Opinion in Neurology is a highly regarded journal offering insightful editorials and on-the-mark invited reviews; covering key subjects such as cerebrovascular disease, developmental disorders, neuroimaging and demyelinating diseases. Published bimonthly, each issue of Current Opinion in Neurology introduces world renowned guest editors and internationally recognized academics within the neurology field, delivering a widespread selection of expert assessments on the latest developments from the most recent literature.