Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings.

IF 4.5 1区 生物学 Q1 BIOLOGY
Yanfei Li, Xiran Chen, Shuqin Wang, Jinmao Wei
{"title":"Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings.","authors":"Yanfei Li, Xiran Chen, Shuqin Wang, Jinmao Wei","doi":"10.1186/s12915-025-02338-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Learning-based methods have recently demonstrated strong potential in predicting drug-protein interactions (DPIs). However, existing approaches often fail to achieve accurate predictions on real-world imbalanced datasets while maintaining high generalizability and scalability, limiting their practical applicability.</p><p><strong>Results: </strong>This study proposes a highly generalized model, GLDPI, aimed at improving prediction accuracy in imbalanced scenarios by preserving the topological relationships among initial molecular representations in the embedding space. Specifically, GLDPI employs dedicated encoders to transform one-dimensional sequence information of drugs and proteins into embedding representations and efficiently calculates the likelihood of DPIs using cosine similarity. Additionally, we introduce a prior loss function based on the guilt-by-association principle to ensure that the topology of the embedding space aligns with the structure of the initial drug-protein network. This design enables GLDPI to effectively capture network relationships and key features of molecular interactions, thereby significantly enhancing predictive performance.</p><p><strong>Conclusions: </strong>Experimental results highlight GLDPI's superior performance on multiple highly imbalanced benchmark datasets, achieving over a 100% improvement in the AUPR metric compared to state-of-the-art methods. Additionally, GLDPI demonstrates exceptional generalization capabilities in cold-start experiments, excelling in predicting novel drug-protein interactions. Furthermore, the model exhibits remarkable scalability, efficiently inferring approximately <math><mrow><mn>1.2</mn> <mo>×</mo> <msup><mn>10</mn> <mn>10</mn></msup> </mrow> </math> drug-protein pairs in less than 10 h.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"243"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02338-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Learning-based methods have recently demonstrated strong potential in predicting drug-protein interactions (DPIs). However, existing approaches often fail to achieve accurate predictions on real-world imbalanced datasets while maintaining high generalizability and scalability, limiting their practical applicability.

Results: This study proposes a highly generalized model, GLDPI, aimed at improving prediction accuracy in imbalanced scenarios by preserving the topological relationships among initial molecular representations in the embedding space. Specifically, GLDPI employs dedicated encoders to transform one-dimensional sequence information of drugs and proteins into embedding representations and efficiently calculates the likelihood of DPIs using cosine similarity. Additionally, we introduce a prior loss function based on the guilt-by-association principle to ensure that the topology of the embedding space aligns with the structure of the initial drug-protein network. This design enables GLDPI to effectively capture network relationships and key features of molecular interactions, thereby significantly enhancing predictive performance.

Conclusions: Experimental results highlight GLDPI's superior performance on multiple highly imbalanced benchmark datasets, achieving over a 100% improvement in the AUPR metric compared to state-of-the-art methods. Additionally, GLDPI demonstrates exceptional generalization capabilities in cold-start experiments, excelling in predicting novel drug-protein interactions. Furthermore, the model exhibits remarkable scalability, efficiently inferring approximately 1.2 × 10 10 drug-protein pairs in less than 10 h.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

通过保持嵌入之间的原始拓扑关系来准确预测药物-蛋白质相互作用。
背景:基于学习的方法最近在预测药物-蛋白质相互作用(dpi)方面显示出强大的潜力。然而,现有的方法往往无法在保持高泛化性和可扩展性的同时,对现实世界的不平衡数据集实现准确的预测,限制了它们的实际适用性。结果:本研究提出了一种高度广义的GLDPI模型,旨在通过保留嵌入空间中初始分子表征之间的拓扑关系来提高不平衡场景下的预测精度。具体而言,GLDPI利用专用编码器将药物和蛋白质的一维序列信息转换为嵌入表示,并利用余弦相似度高效地计算dpi的似然。此外,我们引入了一个基于关联罪恶感原理的先验损失函数,以确保嵌入空间的拓扑结构与初始药物-蛋白质网络的结构一致。该设计使GLDPI能够有效地捕获网络关系和分子相互作用的关键特征,从而显著提高预测性能。结论:实验结果突出了GLDPI在多个高度不平衡的基准数据集上的优越性能,与最先进的方法相比,实现了超过100%的AUPR改进。此外,GLDPI在冷启动实验中表现出卓越的泛化能力,在预测新的药物-蛋白质相互作用方面表现出色。此外,该模型具有显著的可扩展性,在不到10小时的时间内有效地推断出大约1.2 × 10个药物蛋白对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信