{"title":"Emerging biomedical applications of herbal extracts-based biomaterials.","authors":"Jianling Mo, Haolu Shi, Kefeng Ren, Zhaoyang Chen, Xia Sheng","doi":"10.1116/6.0004748","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive herbal extracts have garnered significant attention due to their multitarget regulation and low toxicity, yet their clinical applications are limited by poor solubility, low bioavailability, and insufficient targeting. This review systematically summarizes the pharmacological properties of terpenoids, alkaloids, flavonoids, polysaccharides, and other components, and explores their synergistic integration with biomaterials such as nanoparticle delivery systems, microneedles, and hydrogels. Functionalized nanocarriers enhance the stability and targeting efficiency of paclitaxel, berberine, and other bioactive herbal extracts. Microneedle technology leverages physical penetration and sustained-release mechanisms to achieve efficient transdermal delivery of bioactive herbal extracts (e.g., aconitine, curcumin, and similar agents). Smart hydrogels incorporating active molecules (e.g., baicalin and icariin) achieve spatiotemporal precision in wound healing and osteoarthritis treatment through pH-/enzyme-/reactive oxygen species-responsive release mechanisms. Additionally, the combination of herbal extracts with stents or bone cement expands their potential in cardiovascular and bone regeneration applications. While these integrated systems demonstrate synergistic effects in antitumor, anti-inflammatory, and tissue repair, challenges remain in scalable manufacturing, in vivo metabolic mechanisms, and long-term biosafety. Future research should integrate smart biomaterial designs and multiomics analysis to establish a comprehensive \"component-carrier-efficacy\" development framework, advancing the convergence of bioactive herbal extracts and modern medical science.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004748","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bioactive herbal extracts have garnered significant attention due to their multitarget regulation and low toxicity, yet their clinical applications are limited by poor solubility, low bioavailability, and insufficient targeting. This review systematically summarizes the pharmacological properties of terpenoids, alkaloids, flavonoids, polysaccharides, and other components, and explores their synergistic integration with biomaterials such as nanoparticle delivery systems, microneedles, and hydrogels. Functionalized nanocarriers enhance the stability and targeting efficiency of paclitaxel, berberine, and other bioactive herbal extracts. Microneedle technology leverages physical penetration and sustained-release mechanisms to achieve efficient transdermal delivery of bioactive herbal extracts (e.g., aconitine, curcumin, and similar agents). Smart hydrogels incorporating active molecules (e.g., baicalin and icariin) achieve spatiotemporal precision in wound healing and osteoarthritis treatment through pH-/enzyme-/reactive oxygen species-responsive release mechanisms. Additionally, the combination of herbal extracts with stents or bone cement expands their potential in cardiovascular and bone regeneration applications. While these integrated systems demonstrate synergistic effects in antitumor, anti-inflammatory, and tissue repair, challenges remain in scalable manufacturing, in vivo metabolic mechanisms, and long-term biosafety. Future research should integrate smart biomaterial designs and multiomics analysis to establish a comprehensive "component-carrier-efficacy" development framework, advancing the convergence of bioactive herbal extracts and modern medical science.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.