Mineral Microbiomes Entombed in Great Salt Lake Gypsum: Considerations for Martian Evaporites.

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2025-08-01 Epub Date: 2025-08-06 DOI:10.1177/15311074251365204
Paulina Martinez-Koury, June Baxter, Dianne M Keller, Elliot A Jagniecki, Solinus B Farrer, Byron J Adams, Bonnie K Baxter
{"title":"Mineral Microbiomes Entombed in Great Salt Lake Gypsum: Considerations for Martian Evaporites.","authors":"Paulina Martinez-Koury, June Baxter, Dianne M Keller, Elliot A Jagniecki, Solinus B Farrer, Byron J Adams, Bonnie K Baxter","doi":"10.1177/15311074251365204","DOIUrl":null,"url":null,"abstract":"<p><p>Modern Great Salt Lake, UT, United States, is what remains after the extensive evaporation of Pleistocene Lake Bonneville, which makes this site an appropriate analog to ancient martian lacustrine systems. Today, evaporite minerals surround the lake, including recently precipitated displacive gypsum selenite crystals. Our hypothesis was that hydrated clay solid inclusions within the gypsum would support microbial life with water and nutrients, while the mineral encasement would provide protection from ultraviolet light and temperature fluctuations. Our data demonstrate a complex microbial community that thrives in the clay-rich inclusions within the gypsum crystals. This mineral microbiome includes archaea and fungi, but most notably an immense number of bacterial species from the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Evidence of primary producers (cyanobacteria and microalgae) that have the capacity for diverse metabolisms suggests the possibility of an entombed ecosystem with trophic levels, energy currencies, and connected metabolisms. X-ray diffraction analyses of the sediment in which the gypsum formed show the clay fraction mostly comprises discrete and randomly interstratified illite and smectite, along with lesser amounts of kaolinite and chlorite. The methods developed here for modern gypsum can be extended to studies of ancient minerals on Earth as well as hydrated sulfate minerals on Mars.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"563-583"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1177/15311074251365204","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern Great Salt Lake, UT, United States, is what remains after the extensive evaporation of Pleistocene Lake Bonneville, which makes this site an appropriate analog to ancient martian lacustrine systems. Today, evaporite minerals surround the lake, including recently precipitated displacive gypsum selenite crystals. Our hypothesis was that hydrated clay solid inclusions within the gypsum would support microbial life with water and nutrients, while the mineral encasement would provide protection from ultraviolet light and temperature fluctuations. Our data demonstrate a complex microbial community that thrives in the clay-rich inclusions within the gypsum crystals. This mineral microbiome includes archaea and fungi, but most notably an immense number of bacterial species from the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Evidence of primary producers (cyanobacteria and microalgae) that have the capacity for diverse metabolisms suggests the possibility of an entombed ecosystem with trophic levels, energy currencies, and connected metabolisms. X-ray diffraction analyses of the sediment in which the gypsum formed show the clay fraction mostly comprises discrete and randomly interstratified illite and smectite, along with lesser amounts of kaolinite and chlorite. The methods developed here for modern gypsum can be extended to studies of ancient minerals on Earth as well as hydrated sulfate minerals on Mars.

埋藏在大盐湖石膏中的矿物微生物群:对火星蒸发岩的考虑。
位于美国UT的现代大盐湖是更新世博纳维尔湖大面积蒸发后留下的遗迹,这使该地点成为古代火星湖泊系统的适当类比。今天,湖周围的蒸发岩矿物,包括最近沉淀的置换石膏亚硒酸盐晶体。我们的假设是,石膏中的水合粘土固体包裹体可以为微生物提供水和营养物质,而矿物包裹体可以保护微生物免受紫外线和温度波动的影响。我们的数据表明,在石膏晶体中富含粘土的包裹体中存在一个复杂的微生物群落。这种矿物微生物群包括古细菌和真菌,但最值得注意的是来自放线菌门、拟杆菌门、厚壁菌门和变形菌门的大量细菌。初级生产者(蓝藻和微藻)具有多种代谢能力的证据表明,可能存在一个具有营养水平、能量货币和相关代谢的埋藏生态系统。对石膏形成的沉积物的x射线衍射分析表明,粘土部分主要由离散和随机层间的伊利石和蒙脱石组成,同时还有少量的高岭石和绿泥石。这里为现代石膏开发的方法可以扩展到研究地球上的古代矿物以及火星上的水合硫酸盐矿物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信