Deep manifold learning reveals hidden developmental dynamics of a human embryo model

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kejie Chen, Kai-Rong Qin, Jing Na, Guanbin Gao, Chunxi Yang, Jianping Fu
{"title":"Deep manifold learning reveals hidden developmental dynamics of a human embryo model","authors":"Kejie Chen, Kai-Rong Qin, Jing Na, Guanbin Gao, Chunxi Yang, Jianping Fu","doi":"10.1126/sciadv.adr8901","DOIUrl":null,"url":null,"abstract":"In this study, postimplantation human epiblast and amnion development are modeled using a stem cell–based embryoid system. A dataset of 3697 fluorescent images, along with tissue, cavity, and cell masks, is generated from experimental data. A computational pipeline analyzes morphological and marker expression features, revealing key developmental processes such as tissue growth, cavity expansion, and cell differentiation. To uncover hidden developmental dynamics, a deep manifold learning framework is introduced. This framework uses an autoencoder to project embryoid images into a twenty-dimensional (20D) latent space and models the dynamics using a mean-reverting stochastic process of mixed Gaussians. The approach accurately captures phenotypic changes observed at discrete experimental time points. Moreover, it enables the generation of artificial yet realistic embryoid images at finer temporal resolutions, providing deeper insights into the progression of early human development.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"1 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr8901","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, postimplantation human epiblast and amnion development are modeled using a stem cell–based embryoid system. A dataset of 3697 fluorescent images, along with tissue, cavity, and cell masks, is generated from experimental data. A computational pipeline analyzes morphological and marker expression features, revealing key developmental processes such as tissue growth, cavity expansion, and cell differentiation. To uncover hidden developmental dynamics, a deep manifold learning framework is introduced. This framework uses an autoencoder to project embryoid images into a twenty-dimensional (20D) latent space and models the dynamics using a mean-reverting stochastic process of mixed Gaussians. The approach accurately captures phenotypic changes observed at discrete experimental time points. Moreover, it enables the generation of artificial yet realistic embryoid images at finer temporal resolutions, providing deeper insights into the progression of early human development.
深度流形学习揭示了人类胚胎模型中隐藏的发育动态
在这项研究中,使用基于干细胞的胚胎样系统模拟了人类胚胎移植后的外胚层和羊膜的发育。从实验数据中生成了3697个荧光图像,以及组织、腔和细胞掩模的数据集。计算管道分析形态和标记表达特征,揭示关键的发育过程,如组织生长,腔扩张和细胞分化。为了揭示隐藏的发展动力,引入了一个深度流形学习框架。该框架使用自编码器将胚状体图像投影到20维(20D)潜在空间中,并使用混合高斯随机过程的均值回归来建模动力学。该方法准确捕获在离散实验时间点观察到的表型变化。此外,它能够以更精细的时间分辨率生成人工但逼真的胚胎样图像,为早期人类发展的进程提供更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信