{"title":"Mechanochemical coupling of cell shape and organ function optimizes heart size and contractile efficiency in zebrafish","authors":"Toby G.R. Andrews, Jake Cornwall-Scoones, Marie-Christine Ramel, Kirti Gupta, James Briscoe, Rashmi Priya","doi":"10.1016/j.devcel.2025.07.011","DOIUrl":null,"url":null,"abstract":"How simple tissue primordia sculpt complex functional organs, robustly and reproducibly, remains elusive. During zebrafish development, the embryonic myocardial wall matures into an intricate 3D architecture, composed of an outer compact layer enveloping an inner layer of multicellular trabecular ridges. How these tissue layers acquire their characteristic form suited for their function remains an open question. Here, we find that multiscale mechanochemical coupling and an emergent tissue-scale morphological transition steer functional maturation of the developing zebrafish heart. Single-celled trabecular seeds recruit outer compact layer cells to mature into clonally heterogeneous multicellular ridges, thereby amplifying cardiac contractile forces. In response, the remaining compact layer cells are stretched, which impedes their further recruitment, thereby constraining trabecular ridge density. Concomitantly, Notch-dependent actomyosin dampening triggers a sharp transition in myocardial tissue area, activating rapid organ growth that expands blood-filling capacity. Thus, multiscale self-organizing interactions optimize heart size and contractile efficiency to support embryonic life.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"15 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.07.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
How simple tissue primordia sculpt complex functional organs, robustly and reproducibly, remains elusive. During zebrafish development, the embryonic myocardial wall matures into an intricate 3D architecture, composed of an outer compact layer enveloping an inner layer of multicellular trabecular ridges. How these tissue layers acquire their characteristic form suited for their function remains an open question. Here, we find that multiscale mechanochemical coupling and an emergent tissue-scale morphological transition steer functional maturation of the developing zebrafish heart. Single-celled trabecular seeds recruit outer compact layer cells to mature into clonally heterogeneous multicellular ridges, thereby amplifying cardiac contractile forces. In response, the remaining compact layer cells are stretched, which impedes their further recruitment, thereby constraining trabecular ridge density. Concomitantly, Notch-dependent actomyosin dampening triggers a sharp transition in myocardial tissue area, activating rapid organ growth that expands blood-filling capacity. Thus, multiscale self-organizing interactions optimize heart size and contractile efficiency to support embryonic life.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.