Bedri Ranxhi, Zoya R. Bangash, Zachary M. Chbihi, Zaina Qadri, Nazin N. Islam, Sokol V. Todi, Peter A. LeWitt, Wei-Ling Tsou
{"title":"Regulation of polyamine interconversion enzymes affects α-Synuclein levels and toxicity in a Drosophila model of Parkinson’s Disease","authors":"Bedri Ranxhi, Zoya R. Bangash, Zachary M. Chbihi, Zaina Qadri, Nazin N. Islam, Sokol V. Todi, Peter A. LeWitt, Wei-Ling Tsou","doi":"10.1038/s41531-025-01087-9","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by α-synuclein accumulation and aggregation, leading to disrupted cellular homeostasis, impaired mitochondrial function, and neuroinflammation, ultimately causing neuronal death. Recent biomarker studies reveal elevated serum levels of L-ornithine-derived polyamines correlating with PD progression and clinical subtypes, though their precise role in PD pathology remains unclear. We investigated the impact of polyamine-interconversion enzymes (PAIEs) on α-synucleinopathy in a <i>Drosophila melanogaster</i> model of PD, evaluating key degenerative features such as lifespan, locomotor function, tissue integrity, and α-synuclein accumulation. Knockdown of ornithine decarboxylase 1 (ODC1), spermidine synthase (SRM), and spermine oxidase (SMOX) reduced α-synuclein toxicity, while suppression of spermidine/spermine N1-acetyltransferase 1 (SAT1) and spermine synthase (SMS) exacerbated it. Conversely, overexpressing SAT1 or SMOX significantly reduced α-synuclein toxicity, highlighting their potential role in PD. These findings underscore the critical role of polyamine pathways in modulating α-synuclein toxicity, offering novel therapeutic targets for PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"6 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-01087-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by α-synuclein accumulation and aggregation, leading to disrupted cellular homeostasis, impaired mitochondrial function, and neuroinflammation, ultimately causing neuronal death. Recent biomarker studies reveal elevated serum levels of L-ornithine-derived polyamines correlating with PD progression and clinical subtypes, though their precise role in PD pathology remains unclear. We investigated the impact of polyamine-interconversion enzymes (PAIEs) on α-synucleinopathy in a Drosophila melanogaster model of PD, evaluating key degenerative features such as lifespan, locomotor function, tissue integrity, and α-synuclein accumulation. Knockdown of ornithine decarboxylase 1 (ODC1), spermidine synthase (SRM), and spermine oxidase (SMOX) reduced α-synuclein toxicity, while suppression of spermidine/spermine N1-acetyltransferase 1 (SAT1) and spermine synthase (SMS) exacerbated it. Conversely, overexpressing SAT1 or SMOX significantly reduced α-synuclein toxicity, highlighting their potential role in PD. These findings underscore the critical role of polyamine pathways in modulating α-synuclein toxicity, offering novel therapeutic targets for PD.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.